Computational Intelligence - August 2015 - 19

Weighted Tanimoto
Extreme Learning Machine with
Case Study in Drug Discovery
Wojciech Marian Czarnecki
Faculty of Mathematics and Computer Science,
Jagiellonian University, Krakow, POLAND

©CRE
ATAS

Abstract-Machine
-Machine learning methods are becoming more and
more popular in the field of computer-aided drug design.
The specific data characteristic, including sparse, binary representation as well as noisy, imbalanced datasets, presents a
challenging binary classification problem. Currently, two of
the most successful models in such tasks are the Support
Vector Machine (SVM) and Random Forest (RF). In this
paper, we introduce a Weighted Tanimoto Extreme
Learning Machine (T-WELM), an extremely simple and
fast method for predicting chemical compound biological activity and possibly other data with discrete, binary
representation. We show some theoretical properties of
the proposed model including the ability to learn arbitrary sets of examples. Further analysis shows numerous advantages of T-WELM over SVMs, RFs and
traditional Extreme Learning Machines (ELM) in this
particular task. Experiments performed on 40 large
datasets of thousands of chemical compounds show
that T-WELMs achieve much better classification
results and are at the same time faster in terms of
both training time and further classification than
both ELM models and other state-of-the-art
methods in the field.

C

I. Introduction

omputer-aided drug design has become a very popular technique for speeding up the process of finding
new biologically active compounds. Despite the existence of huge databases of known drugs as well as
numerous approaches to predicting the activity of different
molecules, this problem is still very challenging and even good
generation of training sets [1], data representation [2] and evaluation metrics [3] are open problems. One of the recognized
bottlenecks in this field is the size of the datasets required to

Digital Object Identifier 10.1109/MCI.2015.2437312
Date of publication: 16 July 2015

1556-603X/15©2015IEEE

process. There are hundreds of thousands of compounds in
databases and numerous proteins for which we would like to
know the activity. Furthermore, the resulting datasets are very
noisy and highly imbalanced.
The main aim of this paper is to introduce a new machine
learning model, the Tanimoto Extreme Learning Machine
(T-ELM), which is well suited for this type of problem, has a
strong theoretical background, achieves good classification
results, and is extremely fast (in terms of both training and
evaluation times). T-ELM is a modification of the Extreme

AUGUST 2015 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE

19



Table of Contents for the Digital Edition of Computational Intelligence - August 2015

Computational Intelligence - August 2015 - Cover1
Computational Intelligence - August 2015 - Cover2
Computational Intelligence - August 2015 - 1
Computational Intelligence - August 2015 - 2
Computational Intelligence - August 2015 - 3
Computational Intelligence - August 2015 - 4
Computational Intelligence - August 2015 - 5
Computational Intelligence - August 2015 - 6
Computational Intelligence - August 2015 - 7
Computational Intelligence - August 2015 - 8
Computational Intelligence - August 2015 - 9
Computational Intelligence - August 2015 - 10
Computational Intelligence - August 2015 - 11
Computational Intelligence - August 2015 - 12
Computational Intelligence - August 2015 - 13
Computational Intelligence - August 2015 - 14
Computational Intelligence - August 2015 - 15
Computational Intelligence - August 2015 - 16
Computational Intelligence - August 2015 - 17
Computational Intelligence - August 2015 - 18
Computational Intelligence - August 2015 - 19
Computational Intelligence - August 2015 - 20
Computational Intelligence - August 2015 - 21
Computational Intelligence - August 2015 - 22
Computational Intelligence - August 2015 - 23
Computational Intelligence - August 2015 - 24
Computational Intelligence - August 2015 - 25
Computational Intelligence - August 2015 - 26
Computational Intelligence - August 2015 - 27
Computational Intelligence - August 2015 - 28
Computational Intelligence - August 2015 - 29
Computational Intelligence - August 2015 - 30
Computational Intelligence - August 2015 - 31
Computational Intelligence - August 2015 - 32
Computational Intelligence - August 2015 - 33
Computational Intelligence - August 2015 - 34
Computational Intelligence - August 2015 - 35
Computational Intelligence - August 2015 - 36
Computational Intelligence - August 2015 - 37
Computational Intelligence - August 2015 - 38
Computational Intelligence - August 2015 - 39
Computational Intelligence - August 2015 - 40
Computational Intelligence - August 2015 - 41
Computational Intelligence - August 2015 - 42
Computational Intelligence - August 2015 - 43
Computational Intelligence - August 2015 - 44
Computational Intelligence - August 2015 - 45
Computational Intelligence - August 2015 - 46
Computational Intelligence - August 2015 - 47
Computational Intelligence - August 2015 - 48
Computational Intelligence - August 2015 - 49
Computational Intelligence - August 2015 - 50
Computational Intelligence - August 2015 - 51
Computational Intelligence - August 2015 - 52
Computational Intelligence - August 2015 - 53
Computational Intelligence - August 2015 - 54
Computational Intelligence - August 2015 - 55
Computational Intelligence - August 2015 - 56
Computational Intelligence - August 2015 - 57
Computational Intelligence - August 2015 - 58
Computational Intelligence - August 2015 - 59
Computational Intelligence - August 2015 - 60
Computational Intelligence - August 2015 - 61
Computational Intelligence - August 2015 - 62
Computational Intelligence - August 2015 - 63
Computational Intelligence - August 2015 - 64
Computational Intelligence - August 2015 - 65
Computational Intelligence - August 2015 - 66
Computational Intelligence - August 2015 - 67
Computational Intelligence - August 2015 - 68
Computational Intelligence - August 2015 - 69
Computational Intelligence - August 2015 - 70
Computational Intelligence - August 2015 - 71
Computational Intelligence - August 2015 - 72
Computational Intelligence - August 2015 - 73
Computational Intelligence - August 2015 - 74
Computational Intelligence - August 2015 - 75
Computational Intelligence - August 2015 - 76
Computational Intelligence - August 2015 - 77
Computational Intelligence - August 2015 - 78
Computational Intelligence - August 2015 - 79
Computational Intelligence - August 2015 - 80
Computational Intelligence - August 2015 - Cover3
Computational Intelligence - August 2015 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com