Computational Intelligence - November 2017 - 91

1.0

0.8

0.8

0.8

0.6
0.4
0.2
0.0

1

2
Number of Objective
(a)

3

Objective Value

1.0
Objective Value

Objective Value

1.0

0.6
0.4
0.2
0.0

1

2
Number of Objective
(b)

0.6
0.4
0.2
0.0

3

1

2
Number of Objective
(c)

3

FIGURE 6 The corresponding parallel coordinates of the solution sets in Figure 5. (a) IBEA, (b) SMS-EMOA and (c) MOEA/D.

B. Coverage

In parallel coordinates, it is straightforward to see which region a solution set
does not reach on any objective2. For
example, in Figure 4 the solution set
obtained by the AR method [39] concentrates in one tiny area and the set by
2

Note that for real-world problems whose Pareto front
is unknown, we cannot tell if a solution set reaches the
optimal region of objectives or not.

2.0

2.0

1.5
1.0

1.5

0.0
0.0
0.2
0.4
0.6 f1
0.8
1.0

0.0
0.2
0.4
0.6
f2 0.81.0

1.0

f3

0.5

0.5

f3

0.0
0.0
0.2
0.4
0.6 f1
0.8
1.0

0.0
0.2
0.4
0.6
f2 0.81.0

(a)

(b)

FIGURE 7 An artificial example of two solution sets (A and B) having the same parallel coordinates plots shown in Figure 8. (a) Solution set A and (b) Solution set B.

2.0

2.0
Objective Value

Objective Value

Figure 3 gives such an example, where
solution sets obtained by one run of
NSGA-II and GrEA on the 10-objective WFG7 problem [38] are shown. As
seen, both algorithms virtually reach the
range of the Pareto front (from 0 to 2i
where i is the objective index of the
problem), but they have different GD +
results. NSGA-II is returned a significantly higher (worse) GD + value than
GrEA. This occurence can be from two
possibilities. One is that the solution
set  of NSGA-II is not actually close to
the Pareto front. The other is that
most of solutions in the set converge
already while a small portion of the
set is far away (but still in the range of
the Pareto front).
In addition, it is worth mentioning
that even if the "height" of two solution
sets in the parallel coordinate plot is different, we may also not be able to tell
the convergence difference between
them if the range of a problem's Pareto
front is unknown. This is because different solution sets may converge into different parts of the Pareto front, especially
in the situation where the Pareto front is
highly convex.

1.5
1.0
0.5
0.0

1.5
1.0
0.5
0.0

1

2
Number of Objective
(a)

3

1

2
Number of Objective
(b)

3

FIGURE 8 The parallel coordinates plots of the solution sets in Figure 7. (a) Solution set A and
(b) Solution set B.

IBEA [40] fails to cover the first six
objectives on the 10-objective DTLZ2.
Moreover, we can conjecture some distribution features of solution sets from
their parallel coordinates representation.
Take the solution sets in Figure 5 as an

example; their parallel coordinates representation is shown in Figure 6. From
Figure 6, we can know that the solution
sets of IBEA and SMS-EMOA [41] fail
to cover the region between 0.0 and 0.2
on all three objectives. Also, most of the

NOVEMBER 2017 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE

91



Table of Contents for the Digital Edition of Computational Intelligence - November 2017

Computational Intelligence - November 2017 - Cover1
Computational Intelligence - November 2017 - Cover2
Computational Intelligence - November 2017 - 1
Computational Intelligence - November 2017 - 2
Computational Intelligence - November 2017 - 3
Computational Intelligence - November 2017 - 4
Computational Intelligence - November 2017 - 5
Computational Intelligence - November 2017 - 6
Computational Intelligence - November 2017 - 7
Computational Intelligence - November 2017 - 8
Computational Intelligence - November 2017 - 9
Computational Intelligence - November 2017 - 10
Computational Intelligence - November 2017 - 11
Computational Intelligence - November 2017 - 12
Computational Intelligence - November 2017 - 13
Computational Intelligence - November 2017 - 14
Computational Intelligence - November 2017 - 15
Computational Intelligence - November 2017 - 16
Computational Intelligence - November 2017 - 17
Computational Intelligence - November 2017 - 18
Computational Intelligence - November 2017 - 19
Computational Intelligence - November 2017 - 20
Computational Intelligence - November 2017 - 21
Computational Intelligence - November 2017 - 22
Computational Intelligence - November 2017 - 23
Computational Intelligence - November 2017 - 24
Computational Intelligence - November 2017 - 25
Computational Intelligence - November 2017 - 26
Computational Intelligence - November 2017 - 27
Computational Intelligence - November 2017 - 28
Computational Intelligence - November 2017 - 29
Computational Intelligence - November 2017 - 30
Computational Intelligence - November 2017 - 31
Computational Intelligence - November 2017 - 32
Computational Intelligence - November 2017 - 33
Computational Intelligence - November 2017 - 34
Computational Intelligence - November 2017 - 35
Computational Intelligence - November 2017 - 36
Computational Intelligence - November 2017 - 37
Computational Intelligence - November 2017 - 38
Computational Intelligence - November 2017 - 39
Computational Intelligence - November 2017 - 40
Computational Intelligence - November 2017 - 41
Computational Intelligence - November 2017 - 42
Computational Intelligence - November 2017 - 43
Computational Intelligence - November 2017 - 44
Computational Intelligence - November 2017 - 45
Computational Intelligence - November 2017 - 46
Computational Intelligence - November 2017 - 47
Computational Intelligence - November 2017 - 48
Computational Intelligence - November 2017 - 49
Computational Intelligence - November 2017 - 50
Computational Intelligence - November 2017 - 51
Computational Intelligence - November 2017 - 52
Computational Intelligence - November 2017 - 53
Computational Intelligence - November 2017 - 54
Computational Intelligence - November 2017 - 55
Computational Intelligence - November 2017 - 56
Computational Intelligence - November 2017 - 57
Computational Intelligence - November 2017 - 58
Computational Intelligence - November 2017 - 59
Computational Intelligence - November 2017 - 60
Computational Intelligence - November 2017 - 61
Computational Intelligence - November 2017 - 62
Computational Intelligence - November 2017 - 63
Computational Intelligence - November 2017 - 64
Computational Intelligence - November 2017 - 65
Computational Intelligence - November 2017 - 66
Computational Intelligence - November 2017 - 67
Computational Intelligence - November 2017 - 68
Computational Intelligence - November 2017 - 69
Computational Intelligence - November 2017 - 70
Computational Intelligence - November 2017 - 71
Computational Intelligence - November 2017 - 72
Computational Intelligence - November 2017 - 73
Computational Intelligence - November 2017 - 74
Computational Intelligence - November 2017 - 75
Computational Intelligence - November 2017 - 76
Computational Intelligence - November 2017 - 77
Computational Intelligence - November 2017 - 78
Computational Intelligence - November 2017 - 79
Computational Intelligence - November 2017 - 80
Computational Intelligence - November 2017 - 81
Computational Intelligence - November 2017 - 82
Computational Intelligence - November 2017 - 83
Computational Intelligence - November 2017 - 84
Computational Intelligence - November 2017 - 85
Computational Intelligence - November 2017 - 86
Computational Intelligence - November 2017 - 87
Computational Intelligence - November 2017 - 88
Computational Intelligence - November 2017 - 89
Computational Intelligence - November 2017 - 90
Computational Intelligence - November 2017 - 91
Computational Intelligence - November 2017 - 92
Computational Intelligence - November 2017 - 93
Computational Intelligence - November 2017 - 94
Computational Intelligence - November 2017 - 95
Computational Intelligence - November 2017 - 96
Computational Intelligence - November 2017 - 97
Computational Intelligence - November 2017 - 98
Computational Intelligence - November 2017 - 99
Computational Intelligence - November 2017 - 100
Computational Intelligence - November 2017 - 101
Computational Intelligence - November 2017 - 102
Computational Intelligence - November 2017 - 103
Computational Intelligence - November 2017 - 104
Computational Intelligence - November 2017 - Cover3
Computational Intelligence - November 2017 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com