IEEE Computational Intelligence Magazine - August 2019 - 48
Nevertheless, ComE, and ComE+ can
partially overcome this limitation because they leverage community information, validating the importance of
jointly perform node and community
embedding. Fifth, on average, among all
the baseline, GraRep appears to be the
best performing methods. This suggests
that the higher-order transition probability matrix contains valuable information,
but comes at the price of an overall
higher complexity (O ( ;V ;3 )). Whereas,
on the university Facebook data sets,
M-NMF presents results comparable
with the GraRep models, validating the
importance of modeling communities in
a network structure. Overall, the results
validate the existence of a closed loop
between mesoscopic communities structure and the microscopic nodes structure. That is, community information is
not only useful for community-related
tasks but also node related tasks.
C. Parameter sensitivity
In this section we are going to explore
the performance of the ComE+ algo-
rithm for different parameter setting.
Also, we focus on the comparison
between ComE+ and ComE to evaluate better the variational inference
approach used for community detection
and embedding.
1) Impact of K
As the main difference between ComE+
and ComE is the variational inference
process, we compare the impact of
parameter K for both algorithms. Let us
denote K l as the real number of communities present in datasets. Then, we
generate different embedding with K
equal to the values [3, K l , 10, 20] for
DBLP and [5, 10, K l , 50, 100] for all the
other datasets. This enable us to evaluate the robustness of the proposed
approach w.r.t. the uncertainty in the
number of communities.
From Fig. 3 we make the following
observations. First, on DBLP, neither
ComE nor ComE+ is sensitive to the
setting of K regarding node classification, but both of them are sensitive to
K concerning community detection.
Such behavior indicates that the SVM
can exploit the RBF kernel to separate
the nodes, while the generated node
embedding misleads a traditional clustering algorithm. On the one hand, the
performance of ComE reaches the top
when K = K l , while they reduce by a
relative -140% to -189% in terms of
Conductance and -17.6% to -25.6%
w.r.t. NMI. On the other hand, as
expected, ComE+ is more robust when
K $ K l . That is, the ComE+ performance only varies between -1.4% to
+ 0.2% for the NMI metric and -26.1%
to -2.3% according to Conductance.
Secondly, the models usually perform
the best when K = K l in most cases,
although on rare occasions (e.g., on
Amherst) ComE+ has better performance when K 2 K l. Although the
improvement is not significant, this suggests that the communities present in
the data distribution do not adequately reflect the number of labels. Alternatively, it expresses the tendency of
node embedding methods to create
small sets of homogeneous nodes; thus,
TABLE III Node classification results. Note that all the experiments are conduced with 80% of the total nodes as training set while
the remaining 20% is used for evaluation.
BLOGCATALOG
COME
WIKIPEDIA
MACRO-F1(%)
MICRO-F1(%)
MACRO-F1(%)
MICRO-F1(%)
MACRO-F1(%)
MICRO-F1(%)
26.5 (P = 0.12)
41.7 (P = 0.06)
9.8 (P = 0.15)
44.0 (P = 0.13)
92.2 (P = 0.61)
92.6 (P = 0.47)
COME+
27.1
42.5
10.2
45.4
92.2
92.6
DEEPWALK
22.2 (P < 0.01)
38.3 (P < 0.01)
4.6 (P < 0.01)
28.0 (P < 0.01)
91.2 (P < 0.01)
91.6 (P < 0.01)
LINE
10.9 (P < 0.01)
30.2 (P < 0.01)
5.3 (P < 0.01)
30.5 (P < 0.01)
90.4 (P < 0.01)
91.0 (P < 0.01)
NODE2VEC
24.1 (P < 0.01)
39.9 (P < 0.01)
6.1 (P < 0.01)
31.1 (P < 0.01)
91.5 (P < 0.01)
92.0 (P < 0.01)
GRAREP
23.6 (P < 0.01)
40.9 (P < 0.01)
8.1 (P = 0.09)
33.4 (P < 0.01)
90.6 (P < 0.01)
91.1 (P < 0.01)
M-NMF
15.7 (P < 0.01)
33.8 (P < 0.01)
7.0 (P < 0.01)
33.7 (P < 0.01)
89.6 (P < 0.01)
90.3 (P < 0.01)
PRUNE
4.6 (P < 0.01)
15.6 (P < 0.01)
4.9 (P < 0.01)
35.0 (P < 0.01)
22.4 (P < 0.01)
38.4 (P < 0.01)
ROCHESTER
MACRO-F1(%)
48
DBLP
MICRO-F1(%)
MICH
MACRO-F1(%)
MICRO-F1(%)
AMHERST
MACRO-F1(%)
MICRO-F1(%)
COME
49.7 (P < 0.05)
86.6 (P = 0.42)
36.9 (P = 0.61)
63.2 (P = 0.21)
65.7 (P = 0.5)
91.1 (P = 0.05)
COME+
53.7
86.8
37.3
64.1
66.6
91.6
DEEPWALK
44.1 (P < 0.01)
82.9 (P < 0.01)
33.2 (P < 0.01)
60.9 (P < 0.01)
57.6 (P < 0.01)
88.5 (P < 0.01)
LINE
47.4 (P < 0.01)
85.4 (P < 0.05)
34.1 (P < 0.01)
61.5 (P < 0.01)
59.5 (P < 0.01)
88.9 (P < 0.01)
NODE2VEC
46.6 (P < 0.01)
82.6 (P < 0.01)
34.4 (P < 0.05)
61.6 (P < 0.01)
57.6 (P < 0.01)
89.4 (P < 0.01)
GRAREP
48.8 (P < 0.01)
86.5 (P < 0.01)
35.4 (P = 0.29)
63.0 (P = 0.13)
62.9 (P = 0.07)
91.0 (P = 0.08)
M-NMF
48.3 (P < 0.01)
86.4 (P = 0.23)
34.3 (P < 0.05)
61.6 (P < 0.05)
60.0 (P < 0.05)
90.8 (P < 0.05)
PRUNE
13.2 (P < 0.01)
29.1 (P < 0.01)
11.6 (P < 0.01)
23.6 (P < 0.01)
12.7 (P < 0.01)
27.3 (P < 0.01)
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2019
IEEE Computational Intelligence Magazine - August 2019
Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - August 2019
Contents
IEEE Computational Intelligence Magazine - August 2019 - Cover1
IEEE Computational Intelligence Magazine - August 2019 - Cover2
IEEE Computational Intelligence Magazine - August 2019 - Contents
IEEE Computational Intelligence Magazine - August 2019 - 2
IEEE Computational Intelligence Magazine - August 2019 - 3
IEEE Computational Intelligence Magazine - August 2019 - 4
IEEE Computational Intelligence Magazine - August 2019 - 5
IEEE Computational Intelligence Magazine - August 2019 - 6
IEEE Computational Intelligence Magazine - August 2019 - 7
IEEE Computational Intelligence Magazine - August 2019 - 8
IEEE Computational Intelligence Magazine - August 2019 - 9
IEEE Computational Intelligence Magazine - August 2019 - 10
IEEE Computational Intelligence Magazine - August 2019 - 11
IEEE Computational Intelligence Magazine - August 2019 - 12
IEEE Computational Intelligence Magazine - August 2019 - 13
IEEE Computational Intelligence Magazine - August 2019 - 14
IEEE Computational Intelligence Magazine - August 2019 - 15
IEEE Computational Intelligence Magazine - August 2019 - 16
IEEE Computational Intelligence Magazine - August 2019 - 17
IEEE Computational Intelligence Magazine - August 2019 - 18
IEEE Computational Intelligence Magazine - August 2019 - 19
IEEE Computational Intelligence Magazine - August 2019 - 20
IEEE Computational Intelligence Magazine - August 2019 - 21
IEEE Computational Intelligence Magazine - August 2019 - 22
IEEE Computational Intelligence Magazine - August 2019 - 23
IEEE Computational Intelligence Magazine - August 2019 - 24
IEEE Computational Intelligence Magazine - August 2019 - 25
IEEE Computational Intelligence Magazine - August 2019 - 26
IEEE Computational Intelligence Magazine - August 2019 - 27
IEEE Computational Intelligence Magazine - August 2019 - 28
IEEE Computational Intelligence Magazine - August 2019 - 29
IEEE Computational Intelligence Magazine - August 2019 - 30
IEEE Computational Intelligence Magazine - August 2019 - 31
IEEE Computational Intelligence Magazine - August 2019 - 32
IEEE Computational Intelligence Magazine - August 2019 - 33
IEEE Computational Intelligence Magazine - August 2019 - 34
IEEE Computational Intelligence Magazine - August 2019 - 35
IEEE Computational Intelligence Magazine - August 2019 - 36
IEEE Computational Intelligence Magazine - August 2019 - 37
IEEE Computational Intelligence Magazine - August 2019 - 38
IEEE Computational Intelligence Magazine - August 2019 - 39
IEEE Computational Intelligence Magazine - August 2019 - 40
IEEE Computational Intelligence Magazine - August 2019 - 41
IEEE Computational Intelligence Magazine - August 2019 - 42
IEEE Computational Intelligence Magazine - August 2019 - 43
IEEE Computational Intelligence Magazine - August 2019 - 44
IEEE Computational Intelligence Magazine - August 2019 - 45
IEEE Computational Intelligence Magazine - August 2019 - 46
IEEE Computational Intelligence Magazine - August 2019 - 47
IEEE Computational Intelligence Magazine - August 2019 - 48
IEEE Computational Intelligence Magazine - August 2019 - 49
IEEE Computational Intelligence Magazine - August 2019 - 50
IEEE Computational Intelligence Magazine - August 2019 - 51
IEEE Computational Intelligence Magazine - August 2019 - 52
IEEE Computational Intelligence Magazine - August 2019 - 53
IEEE Computational Intelligence Magazine - August 2019 - 54
IEEE Computational Intelligence Magazine - August 2019 - 55
IEEE Computational Intelligence Magazine - August 2019 - 56
IEEE Computational Intelligence Magazine - August 2019 - 57
IEEE Computational Intelligence Magazine - August 2019 - 58
IEEE Computational Intelligence Magazine - August 2019 - 59
IEEE Computational Intelligence Magazine - August 2019 - 60
IEEE Computational Intelligence Magazine - August 2019 - 61
IEEE Computational Intelligence Magazine - August 2019 - 62
IEEE Computational Intelligence Magazine - August 2019 - 63
IEEE Computational Intelligence Magazine - August 2019 - 64
IEEE Computational Intelligence Magazine - August 2019 - 65
IEEE Computational Intelligence Magazine - August 2019 - 66
IEEE Computational Intelligence Magazine - August 2019 - 67
IEEE Computational Intelligence Magazine - August 2019 - 68
IEEE Computational Intelligence Magazine - August 2019 - 69
IEEE Computational Intelligence Magazine - August 2019 - 70
IEEE Computational Intelligence Magazine - August 2019 - 71
IEEE Computational Intelligence Magazine - August 2019 - 72
IEEE Computational Intelligence Magazine - August 2019 - 73
IEEE Computational Intelligence Magazine - August 2019 - 74
IEEE Computational Intelligence Magazine - August 2019 - 75
IEEE Computational Intelligence Magazine - August 2019 - 76
IEEE Computational Intelligence Magazine - August 2019 - Cover3
IEEE Computational Intelligence Magazine - August 2019 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com