IEEE Computational Intelligence Magazine - August 2020 - 27

[47] G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, and F. Petitjean, "Characterizing
concept drift," Data Mining Knowl. Discovery, vol. 30, no. 4, pp. 964-994, July 2016. doi:
10.1007/s10618-015-0448-4.
[48] N. Ramanathan, R. Chellappa, and S. Biswas, "Computational methods for modeling facial aging: A survey," J. Vis. Lang. Comput., vol. 20, no. 3, pp. 131-144, June 2009.
doi: 10.1016/j.jvlc.2009.01.011.
[49] M. A. Taister, S. D. Holliday, and H. Borrmman, "Comments on facial aging in law
enforcement investigation," Forensic Sci. Commun., vol. 2, no. 2, Apr. 2000.
[50] B. Amos, B. Ludwiczuk, and M. Satyanarayanan, "Openface: A general-purpose face
recognition library with mobile applications," CMU School of Comput. Sci., Tech. Rep.
CMU-CS-16-118, 2016.
[51] S. Berry, J. Levinsohn, and A. Pakes, "Differentiated products demand systems from
a combination of micro and macro data: New car market," J. Politic. Econ., vol. 112, no. 1,
pp. 68-105, Feb. 2004. doi: 10.1086/379939.
[52] D. M. F. Palhares et al., "Normal limits of the electrocardiogram derived from a
large database of Brazilian primary care patients," BMC Card. Disord., vol. 17, no. 1, p.
152, June 2017.
[53] C. J. Tsai, C. I. Lee, and W. P. Yang, "Mining decision rules on data streams in the
presence of concept drifts," Expert Sys. Appl., vol. 36, no. 2, pp. 1164-1178, Mar. 2009.
doi: 10.1016/j.eswa.2007.11.034.
[54] Z. Lipton, Y.-X. Wang, and A. Smola, "Detecting and correcting for label shift
with black box predictors," in Proc. 35th Int. Conf. Machine Learn., July 2018, vol. 80, pp.
3122-3130.
[55] D. R. de Lima Cabral and R. S. M. de Barros, "Concept drift detection based on
fisher's exact test," Inf. Sci., vol. 442-443, pp. 220-234, May 2018. doi: 10.1016/j.
ins.2018.02.054.
[56] M. A. A. Abdualrhman and M. C. Padma, "Cd2a: Concept drift detection approach toward imbalanced data stream," in Proc. Int. Conf. Emerging Research Electronics,
Computer Science and Technology, Aug. 2019, pp. 597-612. doi: 10.1007/978-981-135802-9_54.
[57] S. Rabanser, S. Günnemann, and Z. Lipton, "Failing loudly: An empirical study of
methods for detecting dataset shift," in Proc. Advances Neural Information Processing Systems
32 (NIPS), Dec. 2019, pp. 1394-1406.
[58] A. Dries and U. Rckert, "Adaptive concept drift detection," Statist. Anal. Data Mining, vol. 2, no. 5-6, pp. 311-327, Nov. 2009. doi: 10.1002/sam.10054.
[59] A. Haque, L. Khan, and M. Baron, "Sand: Semi-supervised adaptive novel class detection and classification over data stream," in Proc. 30th AAAI Conf. Artificial Intelligence.,
Feb. 2016, pp. 1652-1658.
[60] A. Haque, L. Khan, M. Baron, B. Thuraisingham, and C. Aggarwal, "Efficient handling of concept drift and concept evolution over stream data," in Proc.
IEEE 32nd Int. Conf. Data Engineering, May 2016, pp. 481-492. doi: 10.1109/ICDE
.2016.7498264.
[61] H. Raza, G. Prasad, and Y. Li, "Dataset shift detection in non-stationary environments using EWMA charts," in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, Oct.
2013, pp. 3151-3156. doi: 10.1109/SMC.2013.537.
[62] H. Raza, G. Prasad, and Y. Li, "EWMA model based shift-detection methods for
detecting covariate shifts in non-stationary environments," Pattern Recognit., vol. 48, no.
3, pp. 659-669, Mar. 2015. doi: 10.1016/j.patcog.2014.07.028.
[63] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, "Unsupervised real-time anomaly
detection for streaming data," Neurocomputing, vol. 262, pp. 134-147, Nov. 2017. doi:
10.1016/j.neucom.2017.04.070.
[64] R. F. de Mello, Y. Vaz, C. H. Grossi, and A. Bifet, "On learning guarantees to unsupervised concept drift detection on data streams," Expert Syst. Appl., vol. 117, pp. 90-102,
Mar. 2019. doi: 10.1016/j.eswa.2018.08.054.
[65] O. Mahdi, E. Pardede, N. Ali, and J. Cao, "Fast reaction to sudden concept drift in
the absence of class labels," Appl. Sci., vol. 10, no. 2, p. 606, Jan. 2020. doi: 10.3390/
app10020606.
[66] Q.-H. Duong, H. Ramampiaro, K. Nrvg, P. Fournier-Viger, and T.-L. Dam, "High
utility drift detection in quantitative data streams," Knowl.-Based Syst., vol. 157, pp. 34-
51, Oct. 2018. doi: 10.1016/j.knosys.2018.05.014.
[67] A. Liu, Y. Song, G. Zhang, and J. Lu, "Regional concept drift detection and density
synchronized drift adaptation," in Proc. 26 Int. Joint Conf. Artificial Intelligence., Aug. 2017,
pp. 2280-2286.
[68] A. Liu, J. Lu, F. Liu, and G. Zhang, "Accumulating regional density dissimilarity for
concept drift detection in data streams," Pattern Recognit., vol. 76, pp. 256-272, Apr. 2018.
doi: 10.1016/j.patcog.2017.11.009.
[69] D. Li, L. Wang, J. Wang, Z. Xue, and S. T. C. Wong, "Transductive local fisher
discriminant analysis for gene expression profile-based cancer classification," in Proc.
IEEE EMBS Int. Conf. Biomed. Health Inf. (BHI), Feb. 2017, pp. 49-52. doi: 10.1109/
BHI.2017.7897202.
[70] N. E. Huang et al., "The empirical mode decomposition and the hilbert spectrum
for nonlinear and non-stationary time series analysis," Proc. Roy. Soc. London A, Math.,
Phys. Eng. Sci., vol. 454, no. 1971, pp. 903-995, Mar. 1998. doi: 10.1098/rspa.1998.0193.
[71] R. Klinkenberg and T. Joachims, "Detecting concept drift with support vector machines," in Proc. 17th Int. Conf. Machine Learning, June 2000, pp. 487-494.
[72] B. J. Oommen and L. Rueda, "Stochastic learning-based weak estimation of multinomial random variables and its applications to pattern recognition in non-stationary
environments," Pattern Recognit., vol. 39, no. 3, pp. 328-341, Mar. 2006. doi: 10.1016/j.
patcog.2005.09.007.
[73] M. Sugiyama, M. Krauledat, and K.-R. Müller, "Covariate shift adaptation by importance weighted cross validation," J. Mach. Learn. Res., vol. 8, pp. 985-1005, Dec. 2007.
[74] M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawanabe, "Direct
importance estimation with model selection and its application to covariate shift adapta-

tion," in Proc. Advances Neural Information Processing Systems 20 (NIPS), Dec. 2008, pp.
1433-1440.
[75] G. Ditzler, G. Rosen, and R. Polikar, "Transductive learning algorithms for nonstationary environments," in Proc. 2012 Int. Joint Conf. Neural Networks, July 2012, pp.
10-15.
[76] S. Clinchant, B. Chidlovskii, and G. Csurka, "Transductive adaptation of black box
predictions," in Proc. 54th Annu. Meeting Association Computational Linguistics, Aug. 2016,
vol. 2, pp. 326-331.
[77] R. M. Marcacini, R. G. Rossi, I. P. Matsuno, and S. O. Rezende, "Cross-domain
aspect extraction for sentiment analysis: A transductive learning approach," Decis. Support
Syst., vol. 114, pp. 70-80, Oct. 2018. doi: 10.1016/j.dss.2018.08.009.
[78] K. P. Bennett and A. Demiriz, "Semi-supervised support vector machines," in Proc.
Advances Neural Information Processing Systems 11 (NIPS), Dec. 1998, pp. 368-374.
[79] L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive svm for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44,
no. 11, pp. 3363-3372, Nov. 2006. doi: 10.1109/TGRS.2006.877950.
[80] K. B. Dyer, R. Capo, and R. Polikar, "Compose: A semisupervised learning framework for initially labeled nonstationary streaming data," IEEE Trans. Neural Netw. Learn.
Syst., vol. 25, no. 1, pp. 12-26, Jan. 2014. doi: 10.1109/TNNLS.2013.2277712.
[81] M. Yamada, M. Sugiyama, and T. Matsui, "Semi-supervised speaker identification under covariate shift," Signal Process., vol. 90, no. 8, pp. 2353-2361, Aug. 2010. doi:
10.1016/j.sigpro.2009.06.001.
[82] S. S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. Data Eng., vol.
22, no. 10, pp. 1345-1359, Oct. 2010. doi: 10.1109/TKDE.2009.191.
[83] D. H. Widyantoro and J. Yen, "Relevant data expansion for learning concept drift
from sparsely labeled data," IEEE Trans. Knowl. Data Eng., vol. 17, no. 3, pp. 401-412,
Mar. 2005. doi: 10.1109/TKDE.2005.48.
[84] B. Kulis, K. Saenko, and T. Darrell, "What you saw is not what you get: Domain
adaptation using asymmetric kernel transforms," in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, June 2011, pp. 1785-1792.
[85] G. Matasci, M. Volpi, M. Kanevski, L. Bruzzone, and D. Tuia, "Semisupervised
transfer component analysis for domain adaptation in remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3550-3564, July 2015. doi:
10.1109/TGRS.2014.2377785.
[86] K. Zhang, B. Schölkopf, K. Muandet, and Z. Wang, "Domain adaptation under target and conditional shift," in Proc. 30th Int. Conf. Machine Learning, June 2013.
[87] G. Csurka, Domain adaptation for visual applications: A comprehensive survey. 2017.
[Online]. Available: arXiv:1702.05374
[88] R. Gopalan, R. Li, and R. Chellappa, "Unsupervised adaptation across domain shifts by generating intermediate data representations," IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 11, pp. 2288-2302, Nov. 2014. doi: 10.1109/
TPAMI.2013.249.
[89] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, "Transfer joint matching for unsupervised domain adaptation," in Proc. IEEE Conf. Computer Vision and Pattern Recognition,
June 2014, pp. 1410-1417. doi: 10.1109/CVPR.2014.183.
[90] M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann, "Domain adaptation on the statistical manifold," in Proc. IEEE Conf. Comp. Vision and Pattern Recognition,
June 2014, pp. 2481-2488. doi: 10.1109/CVPR.2014.318.
[91] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, "Adversarial discriminative domain
adaptation," in Proc. IEEE Conf. Comp. Vision and Pattern Recognition, July 2017.
[92] F. Liu, J. Lu, and G. Zhang, "Unsupervised heterogeneous domain adaptation via
shared fuzzy equivalence relations," IEEE Trans Fuzzy Syst., vol. 26, no. 6, pp. 3555-
3568, Dec. 2018. doi: 10.1109/TFUZZ.2018.2836364.
[93] A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Torralba, "Undoing the
damage of dataset bias," in Proc. 12th European Conf. Computer Vision, Oct. 2012, vol.
7572, pp. 158-171.
[94] J. G. Moreno-Torres, X. Llorà, D. E. Goldberg, and R. Bhargava, "Repairing fractures between data using genetic programming-based feature extraction: A case study
in cancer diagnosis," Inf. Sci., vol. 222, pp. 805-823, 2013. doi: 10.1016/j.ins.2010.
09.018.
[95] L. I. Kuncheva, "Classifier ensembles for changing environment," in Proc. Int. Workshop Multiple Classifier Systems, June 2004, pp. 1-15. doi: 10.1007/978-3-540-259664_1.
[96] R. Polikar, Ensemble Learning. Boston, MA: Springer-Verlag, 2012, pp. 1-34.
[97] J. Z. Kolter and M. A. Maloof, "Dynamic weighted majority: A new ensemble method for tracking concept drift," in Proc. 3rd IEEE Int. Conf. Data Mining, Nov. 2003, pp.
123-130. doi: 10.1109/ICDM.2003.1250911.
[98] L. L. Minku, A. P. White, and X. Yao, "The impact of diversity on online ensemble
learning in the presence of concept drift," IEEE Trans. Knowl. Data Eng., vol. 22, no. 5,
pp. 730-742, May 2010. doi: 10.1109/TKDE.2009.156.
[99] L. L. Minku and X. Yao, "DDD: A new ensemble approach for dealing with concept drift," IEEE Trans. Knowl. Data Eng., vol. 24, no. 4, pp. 619-633, Apr. 2012. doi:
10.1109/TKDE.2011.58.
[100] G. Ditzler and R. Polikar, "Semi-supervised learning in nonstationary environments," in Proc. Int. Joint Conf. Neural Networks, July 2011, pp. 2741-2748.
[101] P. Zhang, X. Zhu, J. Tan, and L. Guo, "Classifier and cluster ensembles for mining
concept drifting data streams," in Proc. IEEE 10th Int. Conf. Data Mining, Dec. 2010, pp.
1175-1180. doi: 10.1109/ICDM.2010.125.
[102] S. K. Siahroudi, P. Z. Moodi, and H. Beigy, "Detection of evolving concepts in
non-stationary data streams: A multiple kernel learning approach," Expert Sys. Appl., vol.
91, pp. 187-197, Jan. 2018. doi: 10.1016/j.eswa.2017.08.033.

AUGUST 2020 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE

27



IEEE Computational Intelligence Magazine - August 2020

Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - August 2020

Contents
IEEE Computational Intelligence Magazine - August 2020 - Cover1
IEEE Computational Intelligence Magazine - August 2020 - Cover2
IEEE Computational Intelligence Magazine - August 2020 - Contents
IEEE Computational Intelligence Magazine - August 2020 - 2
IEEE Computational Intelligence Magazine - August 2020 - 3
IEEE Computational Intelligence Magazine - August 2020 - 4
IEEE Computational Intelligence Magazine - August 2020 - 5
IEEE Computational Intelligence Magazine - August 2020 - 6
IEEE Computational Intelligence Magazine - August 2020 - 7
IEEE Computational Intelligence Magazine - August 2020 - 8
IEEE Computational Intelligence Magazine - August 2020 - 9
IEEE Computational Intelligence Magazine - August 2020 - 10
IEEE Computational Intelligence Magazine - August 2020 - 11
IEEE Computational Intelligence Magazine - August 2020 - 12
IEEE Computational Intelligence Magazine - August 2020 - 13
IEEE Computational Intelligence Magazine - August 2020 - 14
IEEE Computational Intelligence Magazine - August 2020 - 15
IEEE Computational Intelligence Magazine - August 2020 - 16
IEEE Computational Intelligence Magazine - August 2020 - 17
IEEE Computational Intelligence Magazine - August 2020 - 18
IEEE Computational Intelligence Magazine - August 2020 - 19
IEEE Computational Intelligence Magazine - August 2020 - 20
IEEE Computational Intelligence Magazine - August 2020 - 21
IEEE Computational Intelligence Magazine - August 2020 - 22
IEEE Computational Intelligence Magazine - August 2020 - 23
IEEE Computational Intelligence Magazine - August 2020 - 24
IEEE Computational Intelligence Magazine - August 2020 - 25
IEEE Computational Intelligence Magazine - August 2020 - 26
IEEE Computational Intelligence Magazine - August 2020 - 27
IEEE Computational Intelligence Magazine - August 2020 - 28
IEEE Computational Intelligence Magazine - August 2020 - 29
IEEE Computational Intelligence Magazine - August 2020 - 30
IEEE Computational Intelligence Magazine - August 2020 - 31
IEEE Computational Intelligence Magazine - August 2020 - 32
IEEE Computational Intelligence Magazine - August 2020 - 33
IEEE Computational Intelligence Magazine - August 2020 - 34
IEEE Computational Intelligence Magazine - August 2020 - 35
IEEE Computational Intelligence Magazine - August 2020 - 36
IEEE Computational Intelligence Magazine - August 2020 - 37
IEEE Computational Intelligence Magazine - August 2020 - 38
IEEE Computational Intelligence Magazine - August 2020 - 39
IEEE Computational Intelligence Magazine - August 2020 - 40
IEEE Computational Intelligence Magazine - August 2020 - 41
IEEE Computational Intelligence Magazine - August 2020 - 42
IEEE Computational Intelligence Magazine - August 2020 - 43
IEEE Computational Intelligence Magazine - August 2020 - 44
IEEE Computational Intelligence Magazine - August 2020 - 45
IEEE Computational Intelligence Magazine - August 2020 - 46
IEEE Computational Intelligence Magazine - August 2020 - 47
IEEE Computational Intelligence Magazine - August 2020 - 48
IEEE Computational Intelligence Magazine - August 2020 - 49
IEEE Computational Intelligence Magazine - August 2020 - 50
IEEE Computational Intelligence Magazine - August 2020 - 51
IEEE Computational Intelligence Magazine - August 2020 - 52
IEEE Computational Intelligence Magazine - August 2020 - 53
IEEE Computational Intelligence Magazine - August 2020 - 54
IEEE Computational Intelligence Magazine - August 2020 - 55
IEEE Computational Intelligence Magazine - August 2020 - 56
IEEE Computational Intelligence Magazine - August 2020 - 57
IEEE Computational Intelligence Magazine - August 2020 - 58
IEEE Computational Intelligence Magazine - August 2020 - 59
IEEE Computational Intelligence Magazine - August 2020 - 60
IEEE Computational Intelligence Magazine - August 2020 - 61
IEEE Computational Intelligence Magazine - August 2020 - 62
IEEE Computational Intelligence Magazine - August 2020 - 63
IEEE Computational Intelligence Magazine - August 2020 - 64
IEEE Computational Intelligence Magazine - August 2020 - 65
IEEE Computational Intelligence Magazine - August 2020 - 66
IEEE Computational Intelligence Magazine - August 2020 - 67
IEEE Computational Intelligence Magazine - August 2020 - 68
IEEE Computational Intelligence Magazine - August 2020 - 69
IEEE Computational Intelligence Magazine - August 2020 - 70
IEEE Computational Intelligence Magazine - August 2020 - 71
IEEE Computational Intelligence Magazine - August 2020 - 72
IEEE Computational Intelligence Magazine - August 2020 - 73
IEEE Computational Intelligence Magazine - August 2020 - 74
IEEE Computational Intelligence Magazine - August 2020 - 75
IEEE Computational Intelligence Magazine - August 2020 - 76
IEEE Computational Intelligence Magazine - August 2020 - Cover3
IEEE Computational Intelligence Magazine - August 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com