IEEE Computational Intelligence Magazine - February 2021 - 24

learning and discusses how TL can be integrated with EAs to
achieve better optimization performance.

240
Documents

220
200

A. Evolutionary Algorithm

180

EAs denote a class of population-based metaheuristic optimization algorithms that are inspired by biological evolution, such as
reproduction, mutation, and selection [1]. It has been applied to
solve many problems that cannot be easily addressed by traditional
approaches, such as NP-hard combinatorial optimization problems [20], optimization problems with a large number of decision variables [21], and optimization problems with conflicting
objectives [22]. Typically, upon deciding on an encoding representation, e.g., binary encoding [23], gray encoding [24], and real
number encoding [25], the algorithm starts with a randomly
generated initial population. After fitness evaluation of all individuals in the population, selection is performed to identify fitter
individuals to undergo reproduction for generating the offspring.
Then, genetic operations such as crossover and mutation will be
carried out [25]. Such an evolutionary process will be executed
iteratively until certain predefined stopping criteria are satisfied.
From the workflow of EAs, we can observe that the optimization process is based on the movement of individuals in a population within the search space of the problem of interest.
Therefore, the population in an evolutionary search contains key
information for solving the problem, and useful traits could be
learned from moving traces of the population and be transferred
across problem domains if applicable to guide the search towards
enhanced optimization performance.

160
140
120

19
20

18
20

17
20

16

14

13

15

20

20

20

20

12

20

20

11

100
Year
FIGURE 1 Number of published research papers (recorded in Scopus) related to ETO.

problem-solving [14]. As depicted in Fig. 1, by a simple search of
the terms " Evolutionary Transfer Optimization " and " Evolutionary Transfer Algorithm " in Scopus1, the number of published
research papers increases from approximately 110 in year 2011 to
approximately 220 in year 2019. Note that there may be publications within the scope of ETO that are missing in the statistics,
due to the simple criteria used in the search. The ETO aims to
improve the performance of EA solvers in terms of the quality of
solution and speed of search by learning and transferring useful
traits across related problems in the form of solutions, structured
knowledge, etc. In the literature, various ETO approaches have
been proposed to solve both benchmark and practical optimization problems, including dynamic optimization problems [15],
multi-objective optimization problems [16], multitask optimization problems [17], combinatorial optimization problems [18],
and expensive optimization problems [19]. However, to the best
of our knowledge, there is no or little effort made to discuss and
categorize existing ETO approaches. Moreover, it is observed that
existing ETO research progresses disjointedly, which may impede
the development of new methodologies and applications in this
emerging field. This paper thus presents an exposition of existing
ETO approaches according to the type of problems being solved.
It also highlights some challenges faced by the ETO and discusses
a number of future research directions. We hope this paper will
attract attention from researchers in both evolutionary computation and machine learning communities to further design
advanced ETO approaches to address the ever-increasing complexity of optimization problems.
The remainder of this paper is organized as follows. Section
II presents the background of ETO, which includes the introduction of evolutionary optimization and transfer learning.
Section III gives a review of existing state-of-the-art ETO
approaches. Discussions on future research directions of ETO
are given in Section IV. Conclusions are drawn in Section V.
II. Background

This section provides a brief review of EAs, including the definition and workflow of a generic EA. It also introduces transfer
1

https://www.scopus.com/

24

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2021

B. Transfer Learning

It is known that humans naturally transfer knowledge between
tasks, such as by recognizing and applying relevant knowledge
from previous problem-solving experiences when a new task is
encountered [26]. Usually the more relevant a new task is to
those already solved in the past, the easier the new task can be
solved efficiently. In the context of computer science, transfer
learning has been used to leverage the knowledge learned in
one or more source tasks to improve the learning performance
of a related target task. As depicted in Fig. 2, the tasks can be in
the area of traditional machine learning, such as classification,
regression, reinforcement learning, and deep learning [27], [28].
The knowledge learned and transferred across tasks can come
from diverse representations [29], e.g., neural knowledge, matrix
knowledge, and tree knowledge, which is often problem dependent. TL has attracted increasing attention in recent years, and
many algorithms have been proposed to improve the learning
performance of TL in various applications, such as face recognition, indoor localization, and deep learning training [30].
The success of TL in machine learning shows that it is
capable of reducing the effort needed to build a model from
scratch by using fundamental logic or structured knowledge
within one domain and applying it to another. To achieve better optimization performance, instead of starting an evolutionary search from scratch, TL can be integrated into EAs to
generalize what has been optimized in the past. However, the



IEEE Computational Intelligence Magazine - February 2021

Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - February 2021

IEEE Computational Intelligence Magazine - February 2021 - Cover1
IEEE Computational Intelligence Magazine - February 2021 - Cover2
IEEE Computational Intelligence Magazine - February 2021 - 1
IEEE Computational Intelligence Magazine - February 2021 - 2
IEEE Computational Intelligence Magazine - February 2021 - 3
IEEE Computational Intelligence Magazine - February 2021 - 4
IEEE Computational Intelligence Magazine - February 2021 - 5
IEEE Computational Intelligence Magazine - February 2021 - 6
IEEE Computational Intelligence Magazine - February 2021 - 7
IEEE Computational Intelligence Magazine - February 2021 - 8
IEEE Computational Intelligence Magazine - February 2021 - 9
IEEE Computational Intelligence Magazine - February 2021 - 10
IEEE Computational Intelligence Magazine - February 2021 - 11
IEEE Computational Intelligence Magazine - February 2021 - 12
IEEE Computational Intelligence Magazine - February 2021 - 13
IEEE Computational Intelligence Magazine - February 2021 - 14
IEEE Computational Intelligence Magazine - February 2021 - 15
IEEE Computational Intelligence Magazine - February 2021 - 16
IEEE Computational Intelligence Magazine - February 2021 - 17
IEEE Computational Intelligence Magazine - February 2021 - 18
IEEE Computational Intelligence Magazine - February 2021 - 19
IEEE Computational Intelligence Magazine - February 2021 - 20
IEEE Computational Intelligence Magazine - February 2021 - 21
IEEE Computational Intelligence Magazine - February 2021 - 22
IEEE Computational Intelligence Magazine - February 2021 - 23
IEEE Computational Intelligence Magazine - February 2021 - 24
IEEE Computational Intelligence Magazine - February 2021 - 25
IEEE Computational Intelligence Magazine - February 2021 - 26
IEEE Computational Intelligence Magazine - February 2021 - 27
IEEE Computational Intelligence Magazine - February 2021 - 28
IEEE Computational Intelligence Magazine - February 2021 - 29
IEEE Computational Intelligence Magazine - February 2021 - 30
IEEE Computational Intelligence Magazine - February 2021 - 31
IEEE Computational Intelligence Magazine - February 2021 - 32
IEEE Computational Intelligence Magazine - February 2021 - 33
IEEE Computational Intelligence Magazine - February 2021 - 34
IEEE Computational Intelligence Magazine - February 2021 - 35
IEEE Computational Intelligence Magazine - February 2021 - 36
IEEE Computational Intelligence Magazine - February 2021 - 37
IEEE Computational Intelligence Magazine - February 2021 - 38
IEEE Computational Intelligence Magazine - February 2021 - 39
IEEE Computational Intelligence Magazine - February 2021 - 40
IEEE Computational Intelligence Magazine - February 2021 - 41
IEEE Computational Intelligence Magazine - February 2021 - 42
IEEE Computational Intelligence Magazine - February 2021 - 43
IEEE Computational Intelligence Magazine - February 2021 - 44
IEEE Computational Intelligence Magazine - February 2021 - 45
IEEE Computational Intelligence Magazine - February 2021 - 46
IEEE Computational Intelligence Magazine - February 2021 - 47
IEEE Computational Intelligence Magazine - February 2021 - 48
IEEE Computational Intelligence Magazine - February 2021 - 49
IEEE Computational Intelligence Magazine - February 2021 - 50
IEEE Computational Intelligence Magazine - February 2021 - 51
IEEE Computational Intelligence Magazine - February 2021 - 52
IEEE Computational Intelligence Magazine - February 2021 - 53
IEEE Computational Intelligence Magazine - February 2021 - 54
IEEE Computational Intelligence Magazine - February 2021 - 55
IEEE Computational Intelligence Magazine - February 2021 - 56
IEEE Computational Intelligence Magazine - February 2021 - 57
IEEE Computational Intelligence Magazine - February 2021 - 58
IEEE Computational Intelligence Magazine - February 2021 - 59
IEEE Computational Intelligence Magazine - February 2021 - 60
IEEE Computational Intelligence Magazine - February 2021 - 61
IEEE Computational Intelligence Magazine - February 2021 - 62
IEEE Computational Intelligence Magazine - February 2021 - 63
IEEE Computational Intelligence Magazine - February 2021 - 64
IEEE Computational Intelligence Magazine - February 2021 - 65
IEEE Computational Intelligence Magazine - February 2021 - 66
IEEE Computational Intelligence Magazine - February 2021 - 67
IEEE Computational Intelligence Magazine - February 2021 - 68
IEEE Computational Intelligence Magazine - February 2021 - 69
IEEE Computational Intelligence Magazine - February 2021 - 70
IEEE Computational Intelligence Magazine - February 2021 - 71
IEEE Computational Intelligence Magazine - February 2021 - 72
IEEE Computational Intelligence Magazine - February 2021 - 73
IEEE Computational Intelligence Magazine - February 2021 - 74
IEEE Computational Intelligence Magazine - February 2021 - 75
IEEE Computational Intelligence Magazine - February 2021 - 76
IEEE Computational Intelligence Magazine - February 2021 - 77
IEEE Computational Intelligence Magazine - February 2021 - 78
IEEE Computational Intelligence Magazine - February 2021 - 79
IEEE Computational Intelligence Magazine - February 2021 - 80
IEEE Computational Intelligence Magazine - February 2021 - 81
IEEE Computational Intelligence Magazine - February 2021 - 82
IEEE Computational Intelligence Magazine - February 2021 - 83
IEEE Computational Intelligence Magazine - February 2021 - 84
IEEE Computational Intelligence Magazine - February 2021 - 85
IEEE Computational Intelligence Magazine - February 2021 - 86
IEEE Computational Intelligence Magazine - February 2021 - 87
IEEE Computational Intelligence Magazine - February 2021 - 88
IEEE Computational Intelligence Magazine - February 2021 - 89
IEEE Computational Intelligence Magazine - February 2021 - 90
IEEE Computational Intelligence Magazine - February 2021 - 91
IEEE Computational Intelligence Magazine - February 2021 - 92
IEEE Computational Intelligence Magazine - February 2021 - 93
IEEE Computational Intelligence Magazine - February 2021 - 94
IEEE Computational Intelligence Magazine - February 2021 - 95
IEEE Computational Intelligence Magazine - February 2021 - 96
IEEE Computational Intelligence Magazine - February 2021 - 97
IEEE Computational Intelligence Magazine - February 2021 - 98
IEEE Computational Intelligence Magazine - February 2021 - 99
IEEE Computational Intelligence Magazine - February 2021 - 100
IEEE Computational Intelligence Magazine - February 2021 - 101
IEEE Computational Intelligence Magazine - February 2021 - 102
IEEE Computational Intelligence Magazine - February 2021 - 103
IEEE Computational Intelligence Magazine - February 2021 - 104
IEEE Computational Intelligence Magazine - February 2021 - 105
IEEE Computational Intelligence Magazine - February 2021 - 106
IEEE Computational Intelligence Magazine - February 2021 - 107
IEEE Computational Intelligence Magazine - February 2021 - 108
IEEE Computational Intelligence Magazine - February 2021 - Cover3
IEEE Computational Intelligence Magazine - February 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com