IEEE Computational Intelligence Magazine - February 2021 - 58

min
w

	

a

t

2
L (n0) ` w D (n0) j + b t / 1(k) w - w (nk) ; (2)
N
g
k

learning system can accommodate large group members and
ensure more frequent model updates, thereby improving the
group learning performance.

(0)

where L k is the learning loss function of the learning agent n
(0)
for a classification task given its personalized dataset D k and
(k)
the learning model w n of the higher-level groups [33]. Also,
other knowledge transfer techniques such as multi-task regularizer [21] or knowledge distillation regularizer [22] can be used
to define GK in the PLO of learning agents.
Specialized learning problem of specialized groups:
In case of group members who do not have adequate learning
capabilities (e.g., IoT sensing devices with low computational
capabilities), or learning agents who are required to solve a
coordination task. For example, in practical IoT applications, a
given learning system may not always be able to guarantee the
participation of all clients in every communication round due
to intermittent communication, battery drainage, or hardware
ailments [34]. Therefore, a specialized group learning problem
can be performed at the edge servers, and/or fog nodes at the
network's edge as done, for example, in the In-Edge AI framework [35]. The goal of this problem is to fit the collective datasets of all group members, where the group behaves as a virtual
agent that solves the learning problem. Furthermore, the specialized group learning can also have special decentralized
learning structures (e.g., sharing of critic network in multiagent deep reinforcement learning (DRL) [36], meta-training
phase in MLF [9]). Similar to the personalized learning problem, specialized group learning needs to be extended by leveraging the generalized knowledge from the higher-level
specialized groups. Next, in order to achieve joint energylearning efficiency given the limited communication and
computation resources, the design of group learning problem
needs to consider a synergy of resource allocation, device
scheduling, and learning perfor mance. In doing so, the

Personalized
Learning Direction

D. Generalization Mechanism

The generalization mechanism aims to collectively construct
the hierarchical generalized knowledge from all existing specialized groups or learning agents, as illustrated in Fig. 6(b).
Accordingly, the generalized knowledge extends the generalization capability of the Dem-AI system to learn new tasks or
deal with environment changes more efficiently. For this purpose, we propose four strategies that are suitable for different
levels: direct knowledge sharing, indirect knowledge sharing, election,
and union, which can be fixed or can be realized from a categorical distribution of these strategies. At the lowest-level specialized groups, the direct knowledge sharing of learning agents
is possible due to the similarity in the learning task to be performed. At the higher-level specialized groups, the indirect
knowledge sharing among subgroups (i.e., transferred knowledge, meta-knowledge) becomes more probable due to the
huge differences among specialized groups and the characteristics of learning tasks. Throughout the learning process, the
groups become more and more specialized to efficiently solve
different complex learning tasks. Consequently, the generalized
knowledge of the specialized groups becomes very different at
a higher level. Thus, an election mechanism based on voting
can help in reaching consensus among specialized groups. To
this end, a union mechanism is designed as an ensemble of the
collection of highly-specialized groups. This is a possible way to
maintain the diversity of potential groups for the entire learning system. Basically, the diversity of potential groups plays a
vital role in the learning system. It allows the preservation of
ineffective specialized groups who have fewer members or
those who show low performance in the training setting, but

Generalization

Group Learning
Direction

Union
Learning Models

Feedback

Specialized Groups

Generalized Level 3

Learning Agents
Specialized Learning
(a)

Election
Generalized Level 2
Knowledge
Sharing
Generalized Level 1

Personalized Level

(b)
FIGURE 6 Specialized learning and generalization mechanism in the Dem-AI system. (a) Specialized learning mechanism. (b) Hierarchical generalization mechanism.

58

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2021



IEEE Computational Intelligence Magazine - February 2021

Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - February 2021

IEEE Computational Intelligence Magazine - February 2021 - Cover1
IEEE Computational Intelligence Magazine - February 2021 - Cover2
IEEE Computational Intelligence Magazine - February 2021 - 1
IEEE Computational Intelligence Magazine - February 2021 - 2
IEEE Computational Intelligence Magazine - February 2021 - 3
IEEE Computational Intelligence Magazine - February 2021 - 4
IEEE Computational Intelligence Magazine - February 2021 - 5
IEEE Computational Intelligence Magazine - February 2021 - 6
IEEE Computational Intelligence Magazine - February 2021 - 7
IEEE Computational Intelligence Magazine - February 2021 - 8
IEEE Computational Intelligence Magazine - February 2021 - 9
IEEE Computational Intelligence Magazine - February 2021 - 10
IEEE Computational Intelligence Magazine - February 2021 - 11
IEEE Computational Intelligence Magazine - February 2021 - 12
IEEE Computational Intelligence Magazine - February 2021 - 13
IEEE Computational Intelligence Magazine - February 2021 - 14
IEEE Computational Intelligence Magazine - February 2021 - 15
IEEE Computational Intelligence Magazine - February 2021 - 16
IEEE Computational Intelligence Magazine - February 2021 - 17
IEEE Computational Intelligence Magazine - February 2021 - 18
IEEE Computational Intelligence Magazine - February 2021 - 19
IEEE Computational Intelligence Magazine - February 2021 - 20
IEEE Computational Intelligence Magazine - February 2021 - 21
IEEE Computational Intelligence Magazine - February 2021 - 22
IEEE Computational Intelligence Magazine - February 2021 - 23
IEEE Computational Intelligence Magazine - February 2021 - 24
IEEE Computational Intelligence Magazine - February 2021 - 25
IEEE Computational Intelligence Magazine - February 2021 - 26
IEEE Computational Intelligence Magazine - February 2021 - 27
IEEE Computational Intelligence Magazine - February 2021 - 28
IEEE Computational Intelligence Magazine - February 2021 - 29
IEEE Computational Intelligence Magazine - February 2021 - 30
IEEE Computational Intelligence Magazine - February 2021 - 31
IEEE Computational Intelligence Magazine - February 2021 - 32
IEEE Computational Intelligence Magazine - February 2021 - 33
IEEE Computational Intelligence Magazine - February 2021 - 34
IEEE Computational Intelligence Magazine - February 2021 - 35
IEEE Computational Intelligence Magazine - February 2021 - 36
IEEE Computational Intelligence Magazine - February 2021 - 37
IEEE Computational Intelligence Magazine - February 2021 - 38
IEEE Computational Intelligence Magazine - February 2021 - 39
IEEE Computational Intelligence Magazine - February 2021 - 40
IEEE Computational Intelligence Magazine - February 2021 - 41
IEEE Computational Intelligence Magazine - February 2021 - 42
IEEE Computational Intelligence Magazine - February 2021 - 43
IEEE Computational Intelligence Magazine - February 2021 - 44
IEEE Computational Intelligence Magazine - February 2021 - 45
IEEE Computational Intelligence Magazine - February 2021 - 46
IEEE Computational Intelligence Magazine - February 2021 - 47
IEEE Computational Intelligence Magazine - February 2021 - 48
IEEE Computational Intelligence Magazine - February 2021 - 49
IEEE Computational Intelligence Magazine - February 2021 - 50
IEEE Computational Intelligence Magazine - February 2021 - 51
IEEE Computational Intelligence Magazine - February 2021 - 52
IEEE Computational Intelligence Magazine - February 2021 - 53
IEEE Computational Intelligence Magazine - February 2021 - 54
IEEE Computational Intelligence Magazine - February 2021 - 55
IEEE Computational Intelligence Magazine - February 2021 - 56
IEEE Computational Intelligence Magazine - February 2021 - 57
IEEE Computational Intelligence Magazine - February 2021 - 58
IEEE Computational Intelligence Magazine - February 2021 - 59
IEEE Computational Intelligence Magazine - February 2021 - 60
IEEE Computational Intelligence Magazine - February 2021 - 61
IEEE Computational Intelligence Magazine - February 2021 - 62
IEEE Computational Intelligence Magazine - February 2021 - 63
IEEE Computational Intelligence Magazine - February 2021 - 64
IEEE Computational Intelligence Magazine - February 2021 - 65
IEEE Computational Intelligence Magazine - February 2021 - 66
IEEE Computational Intelligence Magazine - February 2021 - 67
IEEE Computational Intelligence Magazine - February 2021 - 68
IEEE Computational Intelligence Magazine - February 2021 - 69
IEEE Computational Intelligence Magazine - February 2021 - 70
IEEE Computational Intelligence Magazine - February 2021 - 71
IEEE Computational Intelligence Magazine - February 2021 - 72
IEEE Computational Intelligence Magazine - February 2021 - 73
IEEE Computational Intelligence Magazine - February 2021 - 74
IEEE Computational Intelligence Magazine - February 2021 - 75
IEEE Computational Intelligence Magazine - February 2021 - 76
IEEE Computational Intelligence Magazine - February 2021 - 77
IEEE Computational Intelligence Magazine - February 2021 - 78
IEEE Computational Intelligence Magazine - February 2021 - 79
IEEE Computational Intelligence Magazine - February 2021 - 80
IEEE Computational Intelligence Magazine - February 2021 - 81
IEEE Computational Intelligence Magazine - February 2021 - 82
IEEE Computational Intelligence Magazine - February 2021 - 83
IEEE Computational Intelligence Magazine - February 2021 - 84
IEEE Computational Intelligence Magazine - February 2021 - 85
IEEE Computational Intelligence Magazine - February 2021 - 86
IEEE Computational Intelligence Magazine - February 2021 - 87
IEEE Computational Intelligence Magazine - February 2021 - 88
IEEE Computational Intelligence Magazine - February 2021 - 89
IEEE Computational Intelligence Magazine - February 2021 - 90
IEEE Computational Intelligence Magazine - February 2021 - 91
IEEE Computational Intelligence Magazine - February 2021 - 92
IEEE Computational Intelligence Magazine - February 2021 - 93
IEEE Computational Intelligence Magazine - February 2021 - 94
IEEE Computational Intelligence Magazine - February 2021 - 95
IEEE Computational Intelligence Magazine - February 2021 - 96
IEEE Computational Intelligence Magazine - February 2021 - 97
IEEE Computational Intelligence Magazine - February 2021 - 98
IEEE Computational Intelligence Magazine - February 2021 - 99
IEEE Computational Intelligence Magazine - February 2021 - 100
IEEE Computational Intelligence Magazine - February 2021 - 101
IEEE Computational Intelligence Magazine - February 2021 - 102
IEEE Computational Intelligence Magazine - February 2021 - 103
IEEE Computational Intelligence Magazine - February 2021 - 104
IEEE Computational Intelligence Magazine - February 2021 - 105
IEEE Computational Intelligence Magazine - February 2021 - 106
IEEE Computational Intelligence Magazine - February 2021 - 107
IEEE Computational Intelligence Magazine - February 2021 - 108
IEEE Computational Intelligence Magazine - February 2021 - Cover3
IEEE Computational Intelligence Magazine - February 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com