IEEE Computational Intelligence Magazine - February 2021 - 74
B. Robust Optimization With Variable
Distribution Assumptions
This section presents the work on robust
optimization in CARP with uncertainties when known variable distributions
are assumed.
1) Deterministic Optimization,
Stochastic Evaluation-Solving
transformed DCARP
A number of existing work did not
design algorithms for solving CARP
with uncertainties directly, but addressed
UCARP as transformed DCARP and
solved it using DCARP solvers, then
evaluated the solutions on realizations
(samples) of the corresponding UCARP.
They focused more on the evaluation of
solutions for selecting optimal heuristics
for the UCARP. A two-phase framework,
deterministic optimization phase and
-stochastic evaluation phase (DOSE), has
been widely used in the robust optimization of UCARP. We illustrate this twophase framework, DOSE, in Figure 2.
During the optimization phase, algorithms for solving DCARP are applied
directly to the static version of the corresponding UCARP, where they solve the
UCARP instances by utilizing the
expectation of the random variables. In
some work, the evaluation phase is also
called the replication phase because each
solution is performed on a number of
replications of UCARP. Each replication
of a UCARP is a DCARP instance as
the random variables are replaced by
their deterministic realizations, usually via
Monte Carlo simulations. This technique
is also called " resampling " in noisy optimization aiming at reducing the probability of mis-ranking solutions [48], [49].
This framework assumes that the model
of the random variables, or at least, the
expectation of the random variables, perfectly reflects the true one in real life. In
other words, it assumes that the expectations of the random variables are known.
❏❏ Deterministic optimization process: During this stage, the given
UCARP with stochastic models for
demands of known expectations is
transformed to a DCARP instance
of which the demands are deterministic and equal to the expectations of
the stochastic demands. Then, the
resulting DCARP instance can be
solved by existing heuristics for the
DCARP.
❏❏ Stochastic evaluation process:
Then, the heuristics are evaluated
and selected based on some pre-
defined performance metrics, computed
using the simulation results of their
optimized, deterministic solutions on
a set of sampled instances of
UCARP. Some repairing techniques
may be applied during simulation if
the actual demand of a task to serve
next exceeds the vehicle's available
capacity. Section IV gives a comprehensive review of different measures
that have been used in the literature.
Core components involved in the
above framework are: (i) the stochastic
models for demands; (ii) the heuristics
for the DCARP, (iii) the performance
metrics for evaluating heuristics and
(iv) the repairing techniques. Complete lists of previously studied (i), (iii)
and (iv) have been introduced in Section III-C, Sections IV and V-A2),
respectively. Although all the heuristics
for the DCARP can be used in this
two-stage framework, we will not
cover all of them but only the ones
used by the publications with a focus
on UCARP. The cor responding
demand model and perfor mance
metric(s) will also be discussed.
The algor ithms designed for
DCARP that have been used in this
framework are summarized as follows.
Sample r Deterministic Realisations
UCARP I
Apply a Prior Techniques
DCARP I1
DCARP I2
···
DCARP Ir
Simulate x
Simulate x
···
Simulate x
Repair
Failure?
···
C (x, Ir) and T (x, Ir)
Replace Random Variables
DCARP IE
Yes
Optimise by Solver for DCARP
Failure?
Solution x
C(x, I1) and T (x, I1)
No
Repair
Failure?
Yes
No
C(x, I2) and T (x, I2)
Yes
Repair
No
Compute User-Specified Metrics for Evaluating x
Phase 1: Optimisation
Phase 2: Evaluation
FIGURE 2 Two-phase framework: deterministic optimization-stochastic evaluation (DOSE). DCARPE denotes the DCARP instance generated by
replacing the random variables of the given UCARP by their expectations. I 1, f, I r denote the r deterministic realizations (samples) of UCARP.
C (x, I i) and T (x, I i) denote the resulted cost and number of trips of simulating a solution x on a deterministic realization I i .
74
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2021
IEEE Computational Intelligence Magazine - February 2021
Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - February 2021
IEEE Computational Intelligence Magazine - February 2021 - Cover1
IEEE Computational Intelligence Magazine - February 2021 - Cover2
IEEE Computational Intelligence Magazine - February 2021 - 1
IEEE Computational Intelligence Magazine - February 2021 - 2
IEEE Computational Intelligence Magazine - February 2021 - 3
IEEE Computational Intelligence Magazine - February 2021 - 4
IEEE Computational Intelligence Magazine - February 2021 - 5
IEEE Computational Intelligence Magazine - February 2021 - 6
IEEE Computational Intelligence Magazine - February 2021 - 7
IEEE Computational Intelligence Magazine - February 2021 - 8
IEEE Computational Intelligence Magazine - February 2021 - 9
IEEE Computational Intelligence Magazine - February 2021 - 10
IEEE Computational Intelligence Magazine - February 2021 - 11
IEEE Computational Intelligence Magazine - February 2021 - 12
IEEE Computational Intelligence Magazine - February 2021 - 13
IEEE Computational Intelligence Magazine - February 2021 - 14
IEEE Computational Intelligence Magazine - February 2021 - 15
IEEE Computational Intelligence Magazine - February 2021 - 16
IEEE Computational Intelligence Magazine - February 2021 - 17
IEEE Computational Intelligence Magazine - February 2021 - 18
IEEE Computational Intelligence Magazine - February 2021 - 19
IEEE Computational Intelligence Magazine - February 2021 - 20
IEEE Computational Intelligence Magazine - February 2021 - 21
IEEE Computational Intelligence Magazine - February 2021 - 22
IEEE Computational Intelligence Magazine - February 2021 - 23
IEEE Computational Intelligence Magazine - February 2021 - 24
IEEE Computational Intelligence Magazine - February 2021 - 25
IEEE Computational Intelligence Magazine - February 2021 - 26
IEEE Computational Intelligence Magazine - February 2021 - 27
IEEE Computational Intelligence Magazine - February 2021 - 28
IEEE Computational Intelligence Magazine - February 2021 - 29
IEEE Computational Intelligence Magazine - February 2021 - 30
IEEE Computational Intelligence Magazine - February 2021 - 31
IEEE Computational Intelligence Magazine - February 2021 - 32
IEEE Computational Intelligence Magazine - February 2021 - 33
IEEE Computational Intelligence Magazine - February 2021 - 34
IEEE Computational Intelligence Magazine - February 2021 - 35
IEEE Computational Intelligence Magazine - February 2021 - 36
IEEE Computational Intelligence Magazine - February 2021 - 37
IEEE Computational Intelligence Magazine - February 2021 - 38
IEEE Computational Intelligence Magazine - February 2021 - 39
IEEE Computational Intelligence Magazine - February 2021 - 40
IEEE Computational Intelligence Magazine - February 2021 - 41
IEEE Computational Intelligence Magazine - February 2021 - 42
IEEE Computational Intelligence Magazine - February 2021 - 43
IEEE Computational Intelligence Magazine - February 2021 - 44
IEEE Computational Intelligence Magazine - February 2021 - 45
IEEE Computational Intelligence Magazine - February 2021 - 46
IEEE Computational Intelligence Magazine - February 2021 - 47
IEEE Computational Intelligence Magazine - February 2021 - 48
IEEE Computational Intelligence Magazine - February 2021 - 49
IEEE Computational Intelligence Magazine - February 2021 - 50
IEEE Computational Intelligence Magazine - February 2021 - 51
IEEE Computational Intelligence Magazine - February 2021 - 52
IEEE Computational Intelligence Magazine - February 2021 - 53
IEEE Computational Intelligence Magazine - February 2021 - 54
IEEE Computational Intelligence Magazine - February 2021 - 55
IEEE Computational Intelligence Magazine - February 2021 - 56
IEEE Computational Intelligence Magazine - February 2021 - 57
IEEE Computational Intelligence Magazine - February 2021 - 58
IEEE Computational Intelligence Magazine - February 2021 - 59
IEEE Computational Intelligence Magazine - February 2021 - 60
IEEE Computational Intelligence Magazine - February 2021 - 61
IEEE Computational Intelligence Magazine - February 2021 - 62
IEEE Computational Intelligence Magazine - February 2021 - 63
IEEE Computational Intelligence Magazine - February 2021 - 64
IEEE Computational Intelligence Magazine - February 2021 - 65
IEEE Computational Intelligence Magazine - February 2021 - 66
IEEE Computational Intelligence Magazine - February 2021 - 67
IEEE Computational Intelligence Magazine - February 2021 - 68
IEEE Computational Intelligence Magazine - February 2021 - 69
IEEE Computational Intelligence Magazine - February 2021 - 70
IEEE Computational Intelligence Magazine - February 2021 - 71
IEEE Computational Intelligence Magazine - February 2021 - 72
IEEE Computational Intelligence Magazine - February 2021 - 73
IEEE Computational Intelligence Magazine - February 2021 - 74
IEEE Computational Intelligence Magazine - February 2021 - 75
IEEE Computational Intelligence Magazine - February 2021 - 76
IEEE Computational Intelligence Magazine - February 2021 - 77
IEEE Computational Intelligence Magazine - February 2021 - 78
IEEE Computational Intelligence Magazine - February 2021 - 79
IEEE Computational Intelligence Magazine - February 2021 - 80
IEEE Computational Intelligence Magazine - February 2021 - 81
IEEE Computational Intelligence Magazine - February 2021 - 82
IEEE Computational Intelligence Magazine - February 2021 - 83
IEEE Computational Intelligence Magazine - February 2021 - 84
IEEE Computational Intelligence Magazine - February 2021 - 85
IEEE Computational Intelligence Magazine - February 2021 - 86
IEEE Computational Intelligence Magazine - February 2021 - 87
IEEE Computational Intelligence Magazine - February 2021 - 88
IEEE Computational Intelligence Magazine - February 2021 - 89
IEEE Computational Intelligence Magazine - February 2021 - 90
IEEE Computational Intelligence Magazine - February 2021 - 91
IEEE Computational Intelligence Magazine - February 2021 - 92
IEEE Computational Intelligence Magazine - February 2021 - 93
IEEE Computational Intelligence Magazine - February 2021 - 94
IEEE Computational Intelligence Magazine - February 2021 - 95
IEEE Computational Intelligence Magazine - February 2021 - 96
IEEE Computational Intelligence Magazine - February 2021 - 97
IEEE Computational Intelligence Magazine - February 2021 - 98
IEEE Computational Intelligence Magazine - February 2021 - 99
IEEE Computational Intelligence Magazine - February 2021 - 100
IEEE Computational Intelligence Magazine - February 2021 - 101
IEEE Computational Intelligence Magazine - February 2021 - 102
IEEE Computational Intelligence Magazine - February 2021 - 103
IEEE Computational Intelligence Magazine - February 2021 - 104
IEEE Computational Intelligence Magazine - February 2021 - 105
IEEE Computational Intelligence Magazine - February 2021 - 106
IEEE Computational Intelligence Magazine - February 2021 - 107
IEEE Computational Intelligence Magazine - February 2021 - 108
IEEE Computational Intelligence Magazine - February 2021 - Cover3
IEEE Computational Intelligence Magazine - February 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com