IEEE Computational Intelligence Magazine - May 2021 - 61

[92] M. Skowron, M. Tkalcˇicˇ, B. Ferwerda, and M. Schedl, " Fusing social media cues:
Personality prediction from Twitter and Instagram, " in Proc. 25th Int. Conf. Companion
World Wide Web, 2016, pp. 107-108.
[93] J. Shen, O. Brdiczka, and J. Liu, " Understanding email writers: Personality prediction from email messages, " in Proc. Int. Conf. User Modeling, Adaptation, and Personalization,
2013, pp. 318-330.
[94] M. K. Abadi, J. A. M. Correa, J. Wache, H. Yang, I. Patras, and N. Sebe, " Inference of
personality traits and affect schedule by analysis of spontaneous reactions to affective videos, "
in Proc. 11th IEEE Int. Conf. Workshops Automatic Face and Gesture Recogn., 2015, vol. 1, pp. 1-8.
[95] Y. Mehta, N. Majumder, A. Gelbukh, and E. Cambria, " Recent trends in deep learning based personality detection, " Artif. Intell. Rev., vol. 53, no. 4, pp. 2313-2339, 2020.
doi: 10.1007/s10462-019-09770-z.
[96] N. Majumder, S. Poria, A. Gelbukh, and E. Cambria, " Deep learning-based document modeling for personality detection from text, " IEEE Intell. Syst., vol. 32, no. 2,
pp. 74-79, 2017. doi: 10.1109/MIS.2017.23.
[97] S. Poria, A. Gelbukh, B. Agarwal, E. Cambria, and N. Howard, " Common sense
knowledge based personality recognition from text, " in Mexican Int. Conf. Artif. Intell.
Springer-Verlag, 2013, pp. 484-496.
[98] F. Celli, " Unsupervised personality recognition for social network sites, " in Proc. 6th
Int. Conf. Digital Soc., 2012, pp. 59-62.
[99] Y. Saez, C. Navarro, A. Mochon, and P. Isasi, " A system for personality and happiness detection, " Int. J. Interact. Multimedia Artif. Intell., vol. 2, no. 5, pp. 7-15, 2014. doi:
10.9781/ijimai.2014.251.
[100] J. A. Golbeck, " Predicting personality from social media text, " AIS Trans. Replicat.
Res., vol. 2, no. 1, pp. 1-10, 2016. doi: 10.17705/1atrr.00009.
[101] M. P. Kalghatgi, M. Ramannavar, and N. S. Sidnal, " A neural network approach
to personality prediction based on the Big Five model, " Int. J. Innovative Res. Adv. Eng.,
vol. 2, no. 8, pp. 56-63, 2015.
[102] P. E. Tetlock and J. I. Kim, " Accountability and judgment processes in a personality prediction task, " J. Personality Social Psychology, vol. 52, no. 4, pp. 700-709, 1987. doi:
10.1037/0022-3514.52.4.700.
[103] J. A. Healey, " Wearable and automotive systems for affect recognition from physiology, " Ph.D. dissertation, Massachusetts Inst. Technol., 2000.
[104] A. Ghandeharioun, S. Fedor, L. Sangermano, D. Ionescu, J. Alpert, C. Dale, D. Sontag, and R. Picard, " Objective assessment of depressive symptoms with machine learning
and wearable sensors data, " in Proc. 7th Int. Conf. Affective Comput. Intell. Interact, 2017,
pp. 325-332. doi: 10.1109/ACII.2017.8273620.
[105] C. Liu, K. Conn, N. Sarkar, and W. Stone, " Online affect detection and robot behavior adaptation for intervention of children with autism, " IEEE Trans. Robot., vol. 24,
no. 4, pp. 883-896, 2008. doi: 10.1109/TRO.2008.2001362.
[106] S. Tuarob et al., " How are you feeling? A personalized methodology for predicting
mental states from temporally observable physical and behavioral information, " J. Biomed.
Inf., vol. 68, pp. 1-19, 2017. doi: 10.1016/j.jbi.2017.02.010.
[107] E. Cambria, Y. Li, F. Z. Xing, S. Poria, and K. Kwok, " Senticnet 6: Ensemble application of symbolic and subsymbolic AI for sentiment analysis, " in Proc. ACM Int. Conf.
Inf. Knowl. Manage., 2020, pp. 105-114.
[108] M. S. Akhtar, A. Ekbal, and E. Cambria, " How intense are you? Predicting intensities of emotions and sentiments using stacked ensemble, " IEEE Comput. Intell. Mag.,
vol. 15, no. 1, pp. 64-75, 2020. doi: 10.1109/MCI.2019.2954667.
[109] Z. Wang, S.-B. Ho, and E. Cambria, " A review of emotion sensing: Categorization
models and algorithms, " Multimedia Tools Appl., pp. 1-30, 2020.
[110] Y. Zheng, T. C. Wong, B. H. Leung, and C. C. Poon, " Unobtrusive and multimodal
wearable sensing to quantify anxiety, " IEEE Sensors J., vol. 16, no. 10, pp. 3689-3696,
2016. doi: 10.1109/JSEN.2016.2539383.
[111] H. Liu, W. Wen, J. Zhang, G. Liu, and Z. Yang, " Autonomic nervous pattern of motion interference in real-time anxiety detection, " IEEE Access, vol. 6, pp. 69,763-69,768,
2018. doi: 10.1109/ACCESS.2018.2880465.
[112] R. S. Dalal, D. P. Bhave, and J. Fiset, " Within-person variability in job performance:
A theoretical review and research agenda, " J. Manage., vol. 40, no. 5, pp. 1396-1436, 2014.
doi: 10.1177/0149206314532691.
[113] C. D. Spielberger and E. C. Reheiser, " Assessment of emotions: Anxiety, anger,
depression, and curiosity, " Appl. Psychol., Health Well-Being, vol. 1, no. 3, pp. 271-302,
2009. doi: 10.1111/j.1758-0854.2009.01017.x.
[114] W. Mumtaz, P. L. Vuong, L. Xia, A. S. Malik, and R. B. A. Rashid, " Automatic diagnosis of alcohol use disorder using EEG features, " Knowl.-Based Syst., vol. 105,
pp. 48-59, 2016. doi: 10.1016/j.knosys.2016.04.026.
[115] P. R. Marques and A. S. McKnight, " Field and laboratory alcohol detection with
2 types of transdermal devices, " Alcoholism, Clin. Exper. Res., vol. 33, no. 4, pp. 703-711,
2009. doi: 10.1111/j.1530-0277.2008.00887.x.
[116] K. P. Lindgren et al., " Self-control, implicit alcohol associations, and the (lack
of ) prediction of consumption in an alcohol taste test with college student heavy episodic drinkers, " PLOS One, vol. 14, no. 1, pp. 1-23, Jan. 2019. doi: 10.1371/journal.
pone.0209940.
[117] M. F. Hovell et al., " Randomised controlled trial of real-time feedback and brief
coaching to reduce indoor smoking, " Tobacco Control, vol. 29, no. 2, pp. 183-190, 2020.
doi: 10.1136/tobaccocontrol-2018-054717.
[118] S. L. Ridner, " Predicting smoking status in a college-age population, " Public Health
Nurs., vol. 22, no. 6, pp. 494-505, 2005. doi: 10.1111/j.0737-1209.2005.220605.x.
[119] T. Choudhury et al., " The mobile sensing platform: An embedded activity recognition system, " IEEE Pervasive Comput., vol. 7, no. 2, pp. 32-41, 2008. doi: 10.1109/
MPRV.2008.39.

[120] G. Plasqui and K. R. Westerterp, " Physical activity assessment with accelerometers:
An evaluation against doubly labeled water, " Obesity, vol. 15, no. 10, pp. 2371-2379, 2007.
doi: 10.1038/oby.2007.281.
[121] D. Van Dyck, G. Cardon, B. Deforche, and I. De Bourdeaudhuij, " The contribution of former work-related activity levels to predict physical activity and sedentary time
during early retirement: Moderating role of educational level and physical functioning, "
PLOS One, vol. 10, no. 3, pp. 1-14, 03 2015. doi: 10.1371/journal.pone.0122522.
[122] J.-K. Min, A. Doryab, J. Wiese, S. Amini, J. Zimmerman, and J. I. Hong,
" Toss'n'turn: Smartphone as sleep and sleep quality detector, " in Proc. SIGCHI Conf.
Human Factors Comput. Syst., 2014, pp. 477-486.
[123] A. Sano, Z. Y. Amy, A. W. McHill, A. J. Phillips, S. Taylor, N. Jaques, E. B. Klerman, and R. W. Picard, " Prediction of happy-sad mood from daily behaviors and previous
sleep history, " in Proc. 37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), 2015,
pp. 6796-6799. doi: 10.1109/EMBC.2015.7319954.
[124] J. Razjouyan, H. Lee, S. Parthasarathy, J. Mohler, A. Sharaf khaneh, and B. Najafi, " Improving sleep quality assessment using wearable sensors by including information
from postural/sleep position changes and body acceleration: A comparison of chest-worn
sensors, wrist actigraphy, and polysomnography, " J. Clin. Sleep Med., vol. 13, no. 11,
pp. 1301-1310, 2017. doi: 10.5664/jcsm.6802.
[125] P. Staples, J. Torous, I. Barnett, K. Carlson, L. Sandoval, M. Keshavan, and J.-P. Onnela, " A comparison of passive and active estimates of sleep in a cohort with schizophrenia, " NPJ Schizophrenia, vol. 3, no. 1, pp. 1-6, 2017. doi: 10.1038/s41537-017-0038-0.
[126] V. Lynn, N. Balasubramanian, and H. A. Schwartz, " Hierarchical modeling for user
personality prediction: The role of message-level attention, " in Proc. 58th Annu. Meeting Assoc. Comput. Linguistics, July 2020, pp. 5306-5316. doi: 10.18653/v1/2020.acl-main.472.
[127] A. Kazemeini, S. Fatehi, Y. Mehta, S. Eetemadi, and E. Cambria, " Personality trait
detection using bagged SVM over BERT word embedding ensembles, " in Proc. ACL
Workshop on Widening NLP, July 2020, p. 4.
[128] Y. Mehta, S. Fatehi, A. Kazameini, C. Stachl, E. Cambria, and S. Eetemadi, " Bottom-up and top-down: Predicting personality with psycholinguistic and language model
features, " in Proc. Int. Conf. Data Mining, 2020, p. 6.
[129] E. Cambria, " Affective computing and sentiment analysis, " IEEE Intell. Syst.,
vol. 31, no. 2, pp. 102-107, 2016. doi: 10.1109/MIS.2016.31.
[130] P. Shaver, J. Schwartz, D. Kirson, and C. O'Connor, " Emotion knowledge: Further
exploration of a prototype approach, " J. Personality Soc. Psychol., vol. 52, no. 6, p. 1061,
1987. doi: 10.1037/0022-3514.52.6.1061.
[131] A. Ortony, G. L. Clore, and A. Collins, The Cognitive Structure of Emotions. Cambridge Univ. Press, 1990.
[132] P. Ekman, " An argument for basic emotions, " Cogn. Emotion, vol. 6, nos. 3-4,
pp. 169-200, 1992. doi: 10.1080/02699939208411068.
[133] Y. Susanto, A. G. Livingstone, B. C. Ng, and E. Cambria, " The hourglass model revisited, " IEEE Intell. Syst., vol. 35, no. 5, pp. 96-102, 2020. doi: 10.1109/MIS.2020.2992799.
[134] M. Gjurkovic´, M. Karan, I. Vukojevic´, M. Bošnjak, and J. Šnajder, " PANDORA
talks: Personality and demographics on Reddit, " 2020, arXiv:2004.04460.
[135] R. Xia and Z. Ding, " Emotion-cause pair extraction: A new task to emotion analysis in texts, " in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics, 2019, pp. 1003-1012.
doi: 10.18653/v1/P19-1096.
[136] Y. Ma, H. Peng, and E. Cambria, " Targeted aspect-based sentiment analysis via
embedding commonsense knowledge into an attentive LSTM, " in Proc. AAAI Conf. Artif.
Intell., 2018, pp. 5876-5883.
[137] S. Sonnentag, J. Volmer, and A. Spychala, " Job performance, " in Sage Handbook
Organizational Behavior, vol. 1, 2008, pp. 427-447.
[138] Y. R. Tausczik and J. W. Pennebaker, " The psychological meaning of words: LIWC
and computerized text analysis methods, " J. Language Soc. Psychol., vol. 29, no. 1, pp. 24-
54, 2010. doi: 10.1177/0261927X09351676.
[139] G. J. Martinez et al., " Improved sleep detection through the fusion of phone
agent and wearable data streams, " in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops (PerCom Workshops), 2020, pp. 1-6. doi: 10.1109/PerComWorkshops48775.2020.9156211.
[140] M. Malik, J. T. Bigger, A. J. Camm, R. Kleiger, A. Malliani, A. Moss, and P. Schwartz,
" Heart rate variability: Standards of measurement, physiological interpretation and clinical
use, " European Heart J., vol. 17, no. 3, pp. 354-381, 1996. doi: 10.1093/oxfordjournals.
eurheartj.a014868.
[141] M. Dougherty and R. Thomas, " Robust decision making in a nonlinear world, "
Psychol. Rev., vol. 119, no. 2, pp. 321-344, 2012. doi: 10.1037/a0027039.
[142] F. L. Schmidt and J. E. Hunter, " The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 85 years of research findings, "
Psychol. Bull., vol. 124, no. 2, pp. 262-274, 1998. doi: 10.1037/0033-2909.124.2.262.
[143] R. Furr and V. Bacharach, " Validity: Estimating and evaluating convergent and
discriminant validity evidence, " Psychometr., An Introduction, pp. 191-235, 2006.
[144] J. Jung, C. Concannon, R. Shroff, S. Goel, and D. G. Goldstein, " Simple rules for
complex decisions, " SSRN 2919024, p. 9, 2017.
[145] S. Baccianella, A. Esuli, and F. Sebastiani, " Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining, " in Proc. Int. Conf. Language Res.
Evaluation, 2010, pp. 2200-2204.
[146] E. Cambria and A. Hussain, Sentic Computing: A Common-Sense-Based Framework for
Concept-Level Sentiment Analysis. Springer-Verlag, 2015.
[147] M. Raghavan, S. Barocas, J. Kleinberg, and K. Levy, " Mitigating bias in algorithmic
hiring: Evaluating claims and practices, " in Proc. Conf. Fairness, Accountability, and Transparency, 2020, pp. 469-481.



MAY 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE

61



IEEE Computational Intelligence Magazine - May 2021

Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - May 2021

Contents
IEEE Computational Intelligence Magazine - May 2021 - Cover1
IEEE Computational Intelligence Magazine - May 2021 - Cover2
IEEE Computational Intelligence Magazine - May 2021 - Contents
IEEE Computational Intelligence Magazine - May 2021 - 2
IEEE Computational Intelligence Magazine - May 2021 - 3
IEEE Computational Intelligence Magazine - May 2021 - 4
IEEE Computational Intelligence Magazine - May 2021 - 5
IEEE Computational Intelligence Magazine - May 2021 - 6
IEEE Computational Intelligence Magazine - May 2021 - 7
IEEE Computational Intelligence Magazine - May 2021 - 8
IEEE Computational Intelligence Magazine - May 2021 - 9
IEEE Computational Intelligence Magazine - May 2021 - 10
IEEE Computational Intelligence Magazine - May 2021 - 11
IEEE Computational Intelligence Magazine - May 2021 - 12
IEEE Computational Intelligence Magazine - May 2021 - 13
IEEE Computational Intelligence Magazine - May 2021 - 14
IEEE Computational Intelligence Magazine - May 2021 - 15
IEEE Computational Intelligence Magazine - May 2021 - 16
IEEE Computational Intelligence Magazine - May 2021 - 17
IEEE Computational Intelligence Magazine - May 2021 - 18
IEEE Computational Intelligence Magazine - May 2021 - 19
IEEE Computational Intelligence Magazine - May 2021 - 20
IEEE Computational Intelligence Magazine - May 2021 - 21
IEEE Computational Intelligence Magazine - May 2021 - 22
IEEE Computational Intelligence Magazine - May 2021 - 23
IEEE Computational Intelligence Magazine - May 2021 - 24
IEEE Computational Intelligence Magazine - May 2021 - 25
IEEE Computational Intelligence Magazine - May 2021 - 26
IEEE Computational Intelligence Magazine - May 2021 - 27
IEEE Computational Intelligence Magazine - May 2021 - 28
IEEE Computational Intelligence Magazine - May 2021 - 29
IEEE Computational Intelligence Magazine - May 2021 - 30
IEEE Computational Intelligence Magazine - May 2021 - 31
IEEE Computational Intelligence Magazine - May 2021 - 32
IEEE Computational Intelligence Magazine - May 2021 - 33
IEEE Computational Intelligence Magazine - May 2021 - 34
IEEE Computational Intelligence Magazine - May 2021 - 35
IEEE Computational Intelligence Magazine - May 2021 - 36
IEEE Computational Intelligence Magazine - May 2021 - 37
IEEE Computational Intelligence Magazine - May 2021 - 38
IEEE Computational Intelligence Magazine - May 2021 - 39
IEEE Computational Intelligence Magazine - May 2021 - 40
IEEE Computational Intelligence Magazine - May 2021 - 41
IEEE Computational Intelligence Magazine - May 2021 - 42
IEEE Computational Intelligence Magazine - May 2021 - 43
IEEE Computational Intelligence Magazine - May 2021 - 44
IEEE Computational Intelligence Magazine - May 2021 - 45
IEEE Computational Intelligence Magazine - May 2021 - 46
IEEE Computational Intelligence Magazine - May 2021 - 47
IEEE Computational Intelligence Magazine - May 2021 - 48
IEEE Computational Intelligence Magazine - May 2021 - 49
IEEE Computational Intelligence Magazine - May 2021 - 50
IEEE Computational Intelligence Magazine - May 2021 - 51
IEEE Computational Intelligence Magazine - May 2021 - 52
IEEE Computational Intelligence Magazine - May 2021 - 53
IEEE Computational Intelligence Magazine - May 2021 - 54
IEEE Computational Intelligence Magazine - May 2021 - 55
IEEE Computational Intelligence Magazine - May 2021 - 56
IEEE Computational Intelligence Magazine - May 2021 - 57
IEEE Computational Intelligence Magazine - May 2021 - 58
IEEE Computational Intelligence Magazine - May 2021 - 59
IEEE Computational Intelligence Magazine - May 2021 - 60
IEEE Computational Intelligence Magazine - May 2021 - 61
IEEE Computational Intelligence Magazine - May 2021 - 62
IEEE Computational Intelligence Magazine - May 2021 - 63
IEEE Computational Intelligence Magazine - May 2021 - 64
IEEE Computational Intelligence Magazine - May 2021 - 65
IEEE Computational Intelligence Magazine - May 2021 - 66
IEEE Computational Intelligence Magazine - May 2021 - 67
IEEE Computational Intelligence Magazine - May 2021 - 68
IEEE Computational Intelligence Magazine - May 2021 - 69
IEEE Computational Intelligence Magazine - May 2021 - 70
IEEE Computational Intelligence Magazine - May 2021 - 71
IEEE Computational Intelligence Magazine - May 2021 - 72
IEEE Computational Intelligence Magazine - May 2021 - 73
IEEE Computational Intelligence Magazine - May 2021 - 74
IEEE Computational Intelligence Magazine - May 2021 - 75
IEEE Computational Intelligence Magazine - May 2021 - 76
IEEE Computational Intelligence Magazine - May 2021 - 77
IEEE Computational Intelligence Magazine - May 2021 - 78
IEEE Computational Intelligence Magazine - May 2021 - 79
IEEE Computational Intelligence Magazine - May 2021 - 80
IEEE Computational Intelligence Magazine - May 2021 - 81
IEEE Computational Intelligence Magazine - May 2021 - 82
IEEE Computational Intelligence Magazine - May 2021 - 83
IEEE Computational Intelligence Magazine - May 2021 - 84
IEEE Computational Intelligence Magazine - May 2021 - 85
IEEE Computational Intelligence Magazine - May 2021 - 86
IEEE Computational Intelligence Magazine - May 2021 - 87
IEEE Computational Intelligence Magazine - May 2021 - 88
IEEE Computational Intelligence Magazine - May 2021 - 89
IEEE Computational Intelligence Magazine - May 2021 - 90
IEEE Computational Intelligence Magazine - May 2021 - 91
IEEE Computational Intelligence Magazine - May 2021 - 92
IEEE Computational Intelligence Magazine - May 2021 - 93
IEEE Computational Intelligence Magazine - May 2021 - 94
IEEE Computational Intelligence Magazine - May 2021 - 95
IEEE Computational Intelligence Magazine - May 2021 - 96
IEEE Computational Intelligence Magazine - May 2021 - 97
IEEE Computational Intelligence Magazine - May 2021 - 98
IEEE Computational Intelligence Magazine - May 2021 - 99
IEEE Computational Intelligence Magazine - May 2021 - 100
IEEE Computational Intelligence Magazine - May 2021 - Cover3
IEEE Computational Intelligence Magazine - May 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com