IEEE Computational Intelligence Magazine - August 2021 - 66
[5] J. Zhao, Z.-H. Guo, Z.-Y. Su, Z.-Y. Zhao, X. Xiao, and F. Liu, " An improved multistep
forecasting model based on WRF ensembles and creative fuzzy systems for wind
speed, " Appl. Energy, vol. 162, pp. 808-826, 2016. doi: 10.1016/j.apenergy.2015.10.145.
[6] C. Y ild iz, M. Tekin, A. Gani, Ö. F. Keçeciog˘lu, H. Aç ikgöz, and M. S¸ekkeli, " A
day-ahead wind power scenario generation, reduction, and quality test tool, " Sustainability,
vol. 9, no. 5, p. 864, 2017. doi: 10.3390/su9050864.
[7] D. Wang, H. Luo, O. Grunder, and Y. Lin, " Multi-step ahead wind speed forecasting using an
improved wavelet neural network combining variational mode decomposition and phase space reconstruction, "
Renewable Energy, vol. 113, pp. 1345-1358, 2017. doi: 10.1016/j.renene.2017.06.095.
[8] J. Wang, P. Du, T. Niu, and W. Yang, " A novel hybrid system based on a new proposed
algorithm-multi-objective whale optimization algorithm for wind speed forecasting, "
Appl. Energy, vol. 208, pp. 344-360, 2017. doi: 10.1016/j.apenergy.2017.10.031.
[9] J. Song, J. Wang, and H. Lu, " A novel combined model based on advanced optimization
algorithm for short-term wind speed forecasting, " Appl. Energy, vol. 215, pp.
643-658, 2018. doi: 10.1016/j.apenergy.2018.02.070.
[10] T. Howard and P. Clark, " Correction and downscaling of NWP wind speed forecasts, "
Meteorol. Appl., J. Forecasting, Pract. Appl., Train. Techn. Model., vol. 14, no. 2, pp.
105-116, 2007. doi: 10.1002/met.12.
[11] P. Du, J. Wang, W. Yang, and T. Niu, " A novel hybrid model for short-term wind power
forecasting, " Appl. Soft Comput., vol. 80, pp. 93-106, 2019. doi: 10.1016/j.asoc.2019.03.035.
[12] Y. Wang, J. Wang, G. Zhao, and Y. Dong, " Application of residual modification approach
in seasonal ARIMA for electricity demand forecasting: A case study of China, "
Energy Pol., vol. 48, pp. 284-294, 2012. doi: 10.1016/j.enpol.2012.05.026.
[13] J. Wang, J. Heng, L. Xiao, and C. Wang, " Research and application of a combined
model based on multi-objective optimization for multi-step ahead wind speed forecasting, "
Energy, vol. 125, pp. 591-613, 2017. doi: 10.1016/j.energy.2017.02.150.
[14] R. G. Kavasseri and K. Seetharaman, " Day-ahead wind speed forecasting using f-ARIMA
models, " Renewable Energy, vol. 34, no. 5, pp. 1388-1393, 2009. doi: 10.1016/j.renene.2008.09.006.
[15] R. Li and Y. Jin, " A wind speed interval prediction system based on multi-objective
optimization for machine learning method, " Appl. Energy, vol. 228, pp. 2207-2220, 2018.
doi: 10.1016/j.apenergy.2018.07.032.
[16] H. Liu, Z. Duan, Y. Li, and H. Lu, " A novel ensemble model of different mother
wavelets for wind speed multi-step forecasting, " Appl. Energy, vol. 228, pp. 1783-1800,
2018. doi: 10.1016/j.apenergy.2018.07.050.
[17] Q. Zhou, C. Wang, and G. Zhang, " Hybrid forecasting system based on an optimal
model selection strategy for different wind speed forecasting problems, " Appl. Energy, vol.
250, pp. 1559-1580, 2019. doi: 10.1016/j.apenergy.2019.05.016.
[18] Y. Hao and C. Tian, " A novel two-stage forecasting model based on error factor and
ensemble method for multi-step wind power forecasting, " Appl. Energy, vol. 238, pp.
368-383, 2019. doi: 10.1016/j.apenergy.2019.01.063.
[19] A. Sfetsos, " A comparison of various forecasting techniques applied to mean hourly
wind speed time series, " Renewable Energy, vol. 21, no. 1, pp. 23-35, 2000. doi: 10.1016/
S0960-1481(99)00125-1.
[20] Y. Wang, Y. Yu, S. Cao, X. Zhang, and S. Gao, " A review of applications of artificial
intelligent algorithms in wind farms, " Artif. Intell. Rev., pp. 1-54, 2019. doi: 10.1007/
s10462-019-09768-7.
[21] A. Liu, Y. Xue, J. HU, and L. LIU, " Ultra-short-term wind power forecasting based
on SVM optimized by GA, " Power Syst. Protection Control, vol. 43, no. 2, pp. 90-95, 2015.
[22] X. Kong, X. Liu, R. Shi, and K. Y. Lee, " Wind speed prediction using reduced support
vector machines with feature selection, " Neurocomputing, vol. 169, pp. 449-456, 2015.
doi: 10.1016/j.neucom.2014.09.090.
[23] P. Jiang, Y. Wang, and J. Wang, " Short-term wind speed forecasting using a hybrid
model, " Energy, vol. 119, pp. 561-577, 2017. doi: 10.1016/j.energy.2016.10.040.
[24] Z.-h. Guo, J. Wu, H.-y. Lu, and J.-z. Wang, " A case study on a hybrid wind speed
forecasting method using bp neural network, " Knowl.-Based Syst., vol. 24, no. 7, pp.
1048-1056, 2011.
[25] A. Ahmed and M. Khalid, " An intelligent framework for short-term multi-step wind
speed forecasting based on functional networks, " Appl. Energy, vol. 225, pp. 902-911,
2018. doi: 10.1016/j.apenergy.2018.04.101.
[26] S. P. Kani and M. Ardehali, " Very short-term wind speed prediction: A new artificial
neural network-Markov chain model, " Energy Convers. Manage., vol. 52, no. 1, pp.
738-745, 2011. doi: 10.1016/j.enconman.2010.07.053.
[27] G. Memarzadeh and F. Keynia, " A new short-term wind speed forecasting method
based on fine-tuned LSTM neural network and optimal input sets, " Energy Convers. Manage.,
vol. 213, p. 112,824, 2020.
[28] G. Zhang and D. Liu, " Causal convolutional gated recurrent unit network with
multiple decomposition methods for short-term wind speed forecasting, " Energy Convers.
Manage., vol. 226, p. 113,500, 2020.
[29] J. Ji, S. Gao, J. Cheng, Z. Tang, and Y. Todo, " An approximate logic neuron model
with a dendritic structure, " Neurocomputing, vol. 173, pp. 1775-1783, 2016. doi: 10.1016/j.
neucom.2015.09.052.
[30] T. Zhou, S. Gao, J. Wang, C. Chu, Y. Todo, and Z. Tang, " Financial time series
prediction using a dendritic neuron model, " Knowl.-Based Syst., vol. 105, pp. 214-224,
2016. doi: 10.1016/j.knosys.2016.05.031.
[31] W. Chen, J. Sun, S. Gao, J.-J. Cheng, J. Wang, and Y. Todo, " Using a single dendritic
neuron to forecast tourist arrivals to Japan, " IEICE Trans. Inf. Syst., vol. 100, no. 1, pp.
190-202, 2017. doi: 10.1587/transinf.2016EDP7152.
[32] J. Ji, S. Song, Y. Tang, S. Gao, Z. Tang, and Y. Todo, " Approximate logic neuron
model trained by states of matter search algorithm, " Knowl.-Based Syst., vol. 163, pp.
120-130, 2019. doi: 10.1016/j.knosys.2018.08.020.
[33] J. K. Makara, A. Losonczy, Q. Wen, and J. C. Magee, " Experience-dependent compartmentalized
dendritic plasticity in rat hippocampal ca1 pyramidal neurons, " Nature
Neurosci., vol. 12, no. 12, p. 1485, 2009. doi: 10.1038/nn.2428.
66 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2021
[34] T. Elsken, J. H. Metzen, F. Hutter et al., " Neural architecture search: A survey. " J.
Mach. Learn. Res., vol. 20, no. 55, pp. 1-21, 2019.
[35] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, " Automatically designing CNN
architectures using the genetic algorithm for image classification, " IEEE Trans. Cybern.,
vol. 50, no. 9, pp. 3840-3854, 2020. doi: 10.1109/TCYB.2020.2983860.
[36] Z. Lu, I. Whalen, Y. Dhebar, K. Deb, E. Goodman, W. Banzhaf, and V. N. Boddeti,
" Multi-objective evolutionary design of deep convolutional neural networks for image
classification, " IEEE Trans. Evol. Comput., 2020. doi: 10.1109/TEVC.2020.3024708.
[37] J. Ji, Y. Tang, L. Ma, J. Li, Q. Lin, Z. Tang, and Y. Todo, " Accuracy versus simplification
in an approximate logic neural model, " IEEE Trans. Neural Netw. Learn. Syst., 2020.
[38] E. Cuevas, A. Echavarría, and M. A. Ramírez-Ortegón, " An optimization algorithm
inspired by the states of matter that improves the balance between exploration and exploitation, "
Appl. Intell., vol. 40, no. 2, pp. 256-272, 2014. doi: 10.1007/s10489-013-0458-0.
[39] N. Chouikhi, B. Ammar, N. Rokbani, and A. M. Alimi, " PSO-based analysis of
echo state network parameters for time series forecasting, " Appl. Soft Comput., vol. 55, pp.
211-225, 2017. doi: 10.1016/j.asoc.2017.01.049.
[40] W. Jia, D. Zhao, Y. Zheng, and S. Hou, " A novel optimized GA-Elman neural network
algorithm, " Neural Comput. Appl., vol. 31, no. 2, pp. 449-459, 2019. doi: 10.1007/
s00521-017-3076-7.
[41] P. Ong and Z. Zainuddin, " Optimizing wavelet neural networks using modified
cuckoo search for multi-step ahead chaotic time series prediction, " Appl. Soft Comput.,
vol. 80, pp. 374-386, 2019. doi: 10.1016/j.asoc.2019.04.016.
[42] D. Z. Li, W. Wang, and F. Ismail, " An evolving fuzzy neural predictor for multidimensional
system state forecasting, " Neurocomputing, vol. 145, pp. 381-391, 2014. doi:
10.1016/j.neucom.2014.05.014.
[43] T. Desell, S. Clachar, J. Higgins, and B. Wild, " Evolving deep recurrent neural
networks using ant colony optimization, " in Proc. Eur. Conf. Evol. Comput. Combinatorial
Optimization. Springer-Verlag, 2015, pp. 86-98.
[44] F. Takens, " Detecting strange attractors in turbulence, " in Dynamical Systems and
Turbulence, Warwick 1980. SpringerVerlag, 1981, pp. 366-381.
[45] C. Koch, Biophysics of Computation: Information Processing in Single Neurons. London:
Oxford Univ. Press, 1998.
[46] E. Salinas and L. Abbott, " A model of multiplicative neural responses in parietal
cortex, " Proc. Nat. Acad. Sci., vol. 93, no. 21, pp. 11,956-11,961, 1996. doi: 10.1073/
pnas.93.21.11956.
[47] F. Gabbiani, H. G. Krapp, C. Koch, and G. Laurent, " Multiplicative computation
in a visual neuron sensitive to looming, " Nature, vol. 420, no. 6913, pp. 320-324, 2002.
[48] M. B. Kennel, R. Brown, and H. D. Abarbanel, " Determining embedding dimension
for phase-space reconstruction using a geometrical construction, " Phys. Rev. A, vol. 45,
no. 6, p. 3403, 1992. doi: 10.1103/PhysRevA.45.3403.
[49] A. M. Fraser and H. L. Swinney, " Independent coordinates for strange attractors
from mutual information, " Phys. Rev. A, vol. 33, no. 2, p. 1134, 1986. doi: 10.1103/
PhysRevA.33.1134.
[50] C. Grebogi, E. Ott, and J. A. Yorke, " Crises, sudden changes in chaotic attractors,
and transient chaos, " Phys. D, Nonlinear Phenomena, vol. 7, nos. 1-3, pp. 181-200, 1983.
doi: 10.1016/0167-2789(83)90126-4.
[51] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, " Determining Lyapunov
exponents from a time series, " Phys. D, Nonlinear Phenomena, vol. 16, no. 3, pp. 285-317,
1985. doi: 10.1016/0167-2789(85)90011-9.
[52] P. Shang, X. Na, and S. Kamae, " Chaotic analysis of time series in the sediment
transport phenomenon, " Chaos, Solitons Fractals, vol. 41, no. 1, pp. 368-379, 2009. doi:
10.1016/j.chaos.2008.01.014.
[53] H. Abarbanel, Analysis of Observed Chaotic Data. Springer Science & Business Media,
2012.
[54] J. Sola and J. Sevilla, " Importance of input data normalization for the application of
neural networks to complex industrial problems, " IEEE Trans. Nuclear Sci., vol. 44, no. 3,
pp. 1464-1468, 1997. doi: 10.1109/23.589532.
[55] G. Zhang, B. E. Patuwo, and M. Y. Hu, " Forecasting with artificial neural networks:
The state of the art, " Int. J. Forecasting, vol. 14, no. 1, pp. 35-62, 1998. doi: 10.1016/
S0169-2070(97)00044-7.
[56] S. García, D. Molina, M. Lozano, and F. Herrera, " A study on the use of nonparametric
tests for analyzing the evolutionary algorithms' behaviour: a case study on the
CEC-2005 special session on real parameter optimization, " J. Heurist., vol. 15, no. 6, p.
617, 2009. doi: 10.1007/s10732-008-9080-4.
[57] J. Derrac, S. García, D. Molina, and F. Herrera, " A practical tutorial on the use
of nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms, " Swarm Evol. Comput., vol. 1, no. 1, pp. 3-18, 2011. doi:
10.1016/j.swevo.2011.02.002.
[58] J. Alcalá-Fdez et al., " Keel: a software tool to assess evolutionary algorithms for
data mining problems, " Soft Comput., vol. 13, no. 3, pp. 307-318, 2009. doi: 10.1007/
s00500-008-0323-y.
[59] J. L. Elman, " Finding structure in time, " Cognit. Sci., vol. 14, no. 2, pp. 179-211,
1990. doi: 10.1207/s15516709cog1402_1.
[60] C.-C. Chang and C.-J. Lin, " LIBSVM: A library for support vector machines, " ACM
Trans. Intell. Syst. Technol., vol. 2, pp. 27:1-27:27, 2011. [Online]. Available: http://www
.csie.ntu.edu.tw/~cjlin/libsvm
[61] J. Zhang and A. C. Sanderson, " Jade: adaptive differential evolution with optional
external archive, " IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945-958, 2009. doi:
10.1109/TEVC.2009.2014613.
[62] R. Tanabe and A. S. Fukunaga, " Improving the search performance of shade using
linear population size reduction, " in Proc. 2014 IEEE Congr. Evol. Comput. (CEC), pp.
1658-1665. doi: 10.1109/CEC.2014.6900380.
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
IEEE Computational Intelligence Magazine - August 2021
Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - August 2021
Contents
IEEE Computational Intelligence Magazine - August 2021 - Cover1
IEEE Computational Intelligence Magazine - August 2021 - Cover2
IEEE Computational Intelligence Magazine - August 2021 - Contents
IEEE Computational Intelligence Magazine - August 2021 - 2
IEEE Computational Intelligence Magazine - August 2021 - 3
IEEE Computational Intelligence Magazine - August 2021 - 4
IEEE Computational Intelligence Magazine - August 2021 - 5
IEEE Computational Intelligence Magazine - August 2021 - 6
IEEE Computational Intelligence Magazine - August 2021 - 7
IEEE Computational Intelligence Magazine - August 2021 - 8
IEEE Computational Intelligence Magazine - August 2021 - 9
IEEE Computational Intelligence Magazine - August 2021 - 10
IEEE Computational Intelligence Magazine - August 2021 - 11
IEEE Computational Intelligence Magazine - August 2021 - 12
IEEE Computational Intelligence Magazine - August 2021 - 13
IEEE Computational Intelligence Magazine - August 2021 - 14
IEEE Computational Intelligence Magazine - August 2021 - 15
IEEE Computational Intelligence Magazine - August 2021 - 16
IEEE Computational Intelligence Magazine - August 2021 - 17
IEEE Computational Intelligence Magazine - August 2021 - 18
IEEE Computational Intelligence Magazine - August 2021 - 19
IEEE Computational Intelligence Magazine - August 2021 - 20
IEEE Computational Intelligence Magazine - August 2021 - 21
IEEE Computational Intelligence Magazine - August 2021 - 22
IEEE Computational Intelligence Magazine - August 2021 - 23
IEEE Computational Intelligence Magazine - August 2021 - 24
IEEE Computational Intelligence Magazine - August 2021 - 25
IEEE Computational Intelligence Magazine - August 2021 - 26
IEEE Computational Intelligence Magazine - August 2021 - 27
IEEE Computational Intelligence Magazine - August 2021 - 28
IEEE Computational Intelligence Magazine - August 2021 - 29
IEEE Computational Intelligence Magazine - August 2021 - 30
IEEE Computational Intelligence Magazine - August 2021 - 31
IEEE Computational Intelligence Magazine - August 2021 - 32
IEEE Computational Intelligence Magazine - August 2021 - 33
IEEE Computational Intelligence Magazine - August 2021 - 34
IEEE Computational Intelligence Magazine - August 2021 - 35
IEEE Computational Intelligence Magazine - August 2021 - 36
IEEE Computational Intelligence Magazine - August 2021 - 37
IEEE Computational Intelligence Magazine - August 2021 - 38
IEEE Computational Intelligence Magazine - August 2021 - 39
IEEE Computational Intelligence Magazine - August 2021 - 40
IEEE Computational Intelligence Magazine - August 2021 - 41
IEEE Computational Intelligence Magazine - August 2021 - 42
IEEE Computational Intelligence Magazine - August 2021 - 43
IEEE Computational Intelligence Magazine - August 2021 - 44
IEEE Computational Intelligence Magazine - August 2021 - 45
IEEE Computational Intelligence Magazine - August 2021 - 46
IEEE Computational Intelligence Magazine - August 2021 - 47
IEEE Computational Intelligence Magazine - August 2021 - 48
IEEE Computational Intelligence Magazine - August 2021 - 49
IEEE Computational Intelligence Magazine - August 2021 - 50
IEEE Computational Intelligence Magazine - August 2021 - 51
IEEE Computational Intelligence Magazine - August 2021 - 52
IEEE Computational Intelligence Magazine - August 2021 - 53
IEEE Computational Intelligence Magazine - August 2021 - 54
IEEE Computational Intelligence Magazine - August 2021 - 55
IEEE Computational Intelligence Magazine - August 2021 - 56
IEEE Computational Intelligence Magazine - August 2021 - 57
IEEE Computational Intelligence Magazine - August 2021 - 58
IEEE Computational Intelligence Magazine - August 2021 - 59
IEEE Computational Intelligence Magazine - August 2021 - 60
IEEE Computational Intelligence Magazine - August 2021 - 61
IEEE Computational Intelligence Magazine - August 2021 - 62
IEEE Computational Intelligence Magazine - August 2021 - 63
IEEE Computational Intelligence Magazine - August 2021 - 64
IEEE Computational Intelligence Magazine - August 2021 - 65
IEEE Computational Intelligence Magazine - August 2021 - 66
IEEE Computational Intelligence Magazine - August 2021 - 67
IEEE Computational Intelligence Magazine - August 2021 - 68
IEEE Computational Intelligence Magazine - August 2021 - 69
IEEE Computational Intelligence Magazine - August 2021 - 70
IEEE Computational Intelligence Magazine - August 2021 - 71
IEEE Computational Intelligence Magazine - August 2021 - 72
IEEE Computational Intelligence Magazine - August 2021 - 73
IEEE Computational Intelligence Magazine - August 2021 - 74
IEEE Computational Intelligence Magazine - August 2021 - 75
IEEE Computational Intelligence Magazine - August 2021 - 76
IEEE Computational Intelligence Magazine - August 2021 - 77
IEEE Computational Intelligence Magazine - August 2021 - 78
IEEE Computational Intelligence Magazine - August 2021 - 79
IEEE Computational Intelligence Magazine - August 2021 - 80
IEEE Computational Intelligence Magazine - August 2021 - 81
IEEE Computational Intelligence Magazine - August 2021 - 82
IEEE Computational Intelligence Magazine - August 2021 - 83
IEEE Computational Intelligence Magazine - August 2021 - 84
IEEE Computational Intelligence Magazine - August 2021 - 85
IEEE Computational Intelligence Magazine - August 2021 - 86
IEEE Computational Intelligence Magazine - August 2021 - 87
IEEE Computational Intelligence Magazine - August 2021 - 88
IEEE Computational Intelligence Magazine - August 2021 - 89
IEEE Computational Intelligence Magazine - August 2021 - 90
IEEE Computational Intelligence Magazine - August 2021 - 91
IEEE Computational Intelligence Magazine - August 2021 - 92
IEEE Computational Intelligence Magazine - August 2021 - 93
IEEE Computational Intelligence Magazine - August 2021 - 94
IEEE Computational Intelligence Magazine - August 2021 - 95
IEEE Computational Intelligence Magazine - August 2021 - 96
IEEE Computational Intelligence Magazine - August 2021 - Cover3
IEEE Computational Intelligence Magazine - August 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com