IEEE Computational Intelligence Magazine - August 2021 - 93
of high-level features from three different
views of features. A new fitness function
based on the measures of accuracy and
distance was developed to enable these
newly constructed features to be accurate
and discriminative. To improve the
diagnosis performance, an ensemble classifier
was created by using constructed
features from multiple views and using
KNN. With these designs, MFCGPE can
not only automatically select and construct
informative and discriminative features
from different views but also build
an effective ensemble to achieve a high
generalization performance.
The effectiveness of MFCGPE was
evaluated on three rolling bearing fault
datasets and compared with the 19 competitive
methods. The results showed that
MFCGPE achieved the best diagnosis
accuracy on the three datasets among all
the methods. The highlight of MFCGPE
was that multiple discriminative features
were automatically constructed using
MFCGPE, and the ensemble diagnosis
can address the issue of poor generalization
of the diagnosis model caused by
using a small number of training samples.
This paper shows that the proposed
MFCGPE approach is effective for fault
diagnosis of rolling bearings. In addition
to fault diagnosis, remaining life prediction
can also help to analyze rolling
bearing degradation. In the future, we
will investigate how GP is used to construct
the health index to predict the
remaining life of the rolling bearing.
Acknowledgments
This work was supported in part by the
National Natural Science Foundation of
China under grant 51777075, the Natural
Science Foundation of Hebei Province
under grant E2019502064, the
Marsden Fund of New Zealand Government
under Contracts VUW1509 and
VUW1615, the Science for Technological
Innovation Challenge (SfTI) fund
under grant E3603/2903, the University
Research Fund at Victoria University of
Wellington grant number 223805/3986,
MBIE Data Science SSIF Fund under
the contract RTVU1914, and National
Natural Science Foundation of China
(NSFC) under Grant 61876169.
References
[1] R. Liu, B. Yang, E. Zio, and X. Chen, " Artificial
intelligence for fault diagnosis of rotating machinery: A
review, " Mech. Syst. Signal Process., vol. 108, pp. 33-47,
2018. doi: 10.1016/j.ymssp.2018.02.016.
[2] H. Li, T. Liu, X. Wu, and Q. Chen, " Enhanced frequency
band entropy method for fault feature extraction
of rolling element bearings, " IEEE Trans. Ind. Inform.,
vol. 16, no. 9, pp. 5780-5791, 2020. doi: 10.1109/
TII.2019.2957936.
[3] Y. Zhang and R. Randall, " Rolling element bearing
fault diagnosis based on the combination of genetic
algorithms and fast kurtogram, " Mech. Syst. Signal Process.,
vol. 23, no. 5, pp. 1509-1517, 2009. doi: 10.1016/j.
ymssp.2009.02.003.
[4] R. Yan, R. X. Gao, and X. Chen, " Wavelets for
fault diagnosis of rotary machines: A review with applications, "
Signal Process., vol. 96, pp. 1-15, 2014. doi:
10.1016/j.sigpro.2013.04.015.
[5] Y. Lei, J. Lin, Z. He, and M. Zuo, " A review on empirical
mode decomposition in fault diagnosis of rotating
machinery, " Mech. Syst. Signal Process., vol. 35, nos. 1-2,
pp. 108-126, 2013. doi: 10.1016/j.ymssp.2012.09.015.
[6] J. Antoni, " The spectral kurtosis: a useful tool for
characterising non-stationary signals, " Mech. Syst. Signal
Process., vol. 20, no. 2, pp. 282-307, 2006. doi: 10.1016/j.
ymssp.2004.09.001.
[7] G. L. McDonald, Q. Zhao, and M. J. Zuo, " Maximum
correlated kurtosis deconvolution and application
on gear tooth chip fault detection, " Mech. Syst. Signal
Process., vol. 33, pp. 237-255, 2012. doi: 10.1016/j.ymssp.2012.06.010.
[8]
K. Dragomiretskiy and D. Zosso, " Variational mode
decomposition, " IEEE Trans. Signal Process., vol. 62, no.
3, pp. 531-544, 2013. doi: 10.1109/TSP.2013.2288675.
[9] R. B. Randall, J. Antoni, and S. Chobsaard, " The relationship
between spectral correlation and envelope analysis
in the diagnostics of bearing faults and other cyclostationary
machine signals, " Mech. Syst. Signal Process., vol. 15, no. 5,
pp. 945-962, 2001. doi: 10.1006/mssp.2001.1415.
[10] S. Maurya, V. Singh, N. K. Verma, and C. K.
Mechefske, " Condition-based monitoring in variable
machine running conditions using low-level knowledge
transfer with DNN, " IEEE Trans. Autom. Sci. Eng., 2020.
[11] J. Yang, Y. Zhang, and Y. Zhu, " Intelligent fault
diagnosis of rolling element bearing based on SVMS
and fractal dimension, " Mech. Syst. Signal Process., vol.
21, no. 5, pp. 2012-2024, 2007. doi: 10.1016/j.yms
sp.2006.10.005.
[12] W. Caesarendra, B. Kosasih, A. K. Tieu, and C. A.
Moodie, " Application of the largest Lyapunov exponent
algorithm for feature extraction in low speed slew bearing
condition monitoring, " Mech. Syst. Signal Process., vol. 50,
pp. 116-138, 2015. doi: 10.1016/j.ymssp.2014.05.021.
[13] J. Zheng, H. Pan, and J. Cheng, " Rolling bearing
fault detection and diagnosis based on composite multiscale
fuzzy entropy and ensemble support vector machines, "
Mech. Syst. Signal Process., vol. 85, pp. 746-759,
2017. doi: 10.1016/j.ymssp.2016.09.010.
[14] Y. Li, Y. Yang, G. Li, M. Xu, and W. Huang, " A fault
diagnosis scheme for planetary gearboxes using modified
multi-scale symbolic dynamic entropy and MRMR
feature selection, " Mech. Syst. Signal Process., vol. 91, pp.
295-312, 2017. doi: 10.1016/j.ymssp.2016.12.040.
[15] X. Yan and M. Jia, " Intelligent fault diagnosis of rotating
machinery using improved multiscale dispersion
entropy and MRMR feature selection, " Knowl. Based
Syst., vol. 163, pp. 450-471, 2019. doi: 10.1016/j.kno
sys.2018.09.004.
[16] V. Singh and N. K. Verma, " Intelligent conditionbased
monitoring techniques for bearing fault diagnosis, "
IEEE Sens. J., 2020.
[17] X. Zhang, Q. Zhang, M. Chen, Y. Sun, X. Qin, and
H. Li, " A two-stage feature selection and intelligent fault
diagnosis method for rotating machinery using hybrid
filter and wrapper method, " Neurocomputing, vol. 275, pp.
2426-2439, 2018. doi: 10.1016/j.neucom.2017.11.016.
[18] Z. Huo, Y. Zhang, L. Shu, and M. Gallimore, " A
new bearing fault diagnosis method based on fine-tocoarse
multiscale permutation entropy, Laplacian score
and SVM, " IEEE Access, vol. 7, pp. 17,050-17,066, 2019.
doi: 10.1109/ACCESS.2019.2893497.
[19] Y. Gu, X. Zhou, D. Yu, and Y. Shen, " Fault diagnosis
method of rolling bearing using principal component
analysis and support vector machine, " J. Mech. Sci. Technol.,
vol. 32, no. 11, pp. 5079-5088, 2018. doi: 10.1007/
s12206-018-1004-0.
[20] J. Yu, " Machinery fault diagnosis using joint global
and local/nonlocal discriminant analysis with selective
ensemble learning, " J. Sound Vib., vol. 382, pp. 340-356,
2016. doi: 10.1016/j.jsv.2016.06.046.
[21] X. Zhao and M. Jia, " Fault diagnosis of rolling bearing
based on feature reduction with global-local margin
fisher analysis, " Neurocomputing, vol. 315, pp. 447-464,
2018. doi: 10.1016/j.neucom.2018.07.038.
[22] J. Tian, C. Morillo, M. H. Azarian, and M. Pecht,
" Motor bearing fault detection using spectral kurtosis-based
feature extraction coupled with k-nearest
neighbor distance analysis, " IEEE Trans. Ind. Electron., vol.
63, no. 3, pp. 1793-1803, 2016. doi: 10.1109/TIE.2015.
2509913.
[23] M. Unal, M. Onat, M. Demetgul, and H. Kucuk,
" Fault diagnosis of rolling bearings using a genetic algorithm
optimized neural network, " Measurement,
vol. 58, pp. 187-196, 2014. doi: 10.1016/j.measure
ment.2014.08.041.
[24] M. Luo, C. Li, X. Zhang, R. Li, and X. An, " Compound
feature selection and parameter optimization of
ELM for fault diagnosis of rolling element bearings, "
ISA Trans., vol. 65, pp. 556-566, 2016. doi: 10.1016/j.
isatra.2016.08.022.
[25] X. Yan and M. Jia, " A novel optimized svm classification
algorithm with multi-domain feature and its
application to fault diagnosis of rolling bearing, " Neurocomputing,
vol. 313, pp. 47-64, 2018. doi: 10.1016/j.
neucom.2018.05.002.
[26] M. He and D. He, " Deep learning-based approach
for bearing fault diagnosis, " IEEE Trans. Ind. Appl., vol.
53, no. 3, pp. 3057-3065, 2017. doi: 10.1109/TIA.2017.
2661250.
[27] S. Zhang, S. Zhang, B. Wang, and T. G. Habetler,
" Deep learning algorithms for bearing fault diagnostics-A
comprehensive review, " IEEE Access, vol. 8,
pp. 29,857-29,881, 2020. doi: 10.1109/ACCESS.2020.
2972859.
[28] W. Deng, H. Liu, J. Xu, H. Zhao, and Y. Song, " An
improved quantum-inspired differential evolution algorithm
for deep belief network, " IEEE Trans. Instrum.
Meas., vol. 69, no. 10, pp. 7319-7327, 2020.
[29] S. Maurya, V. Singh, and N. K. Verma, " Condition
monitoring of machines using fused features from
EMD-based local energy with DNN, " IEEE Sens. J., vol.
20, no. 15, pp. 8316-8327, 2019. doi: 10.1109/JSEN.
2019.2927754.
[30] C. Cheng, B. Zhou, G. Ma, D. Wu, and Y. Yuan,
" Wasserstein distance based deep adversarial transfer
learning for intelligent fault diagnosis with unlabeled or
insufficient labeled data, " Neurocomputing, vol. 409, pp.
35-45, 2020. doi: 10.1016/j.neucom.2020.05.040.
[31] H. Al-Sahaf et al., " A survey on evolutionary machine
learning, " J. Roy. Soc. N. Z., vol. 49, no. 2, pp.
205-228, 2019. doi: 10.1080/03036758.2019.1609052.
[32] W. Deng, J. Xu, X.-Z. Gao, and H. Zhao, " An enhanced
MSIQDE algorithm with novel multiple strategies
for global optimization problems, " IEEE Trans. Syst.
Man. C., 2020.
[33] W. Deng, J. Xu, Y. Song, and H. Zhao, " Differential
evolution algorithm with wavelet basis function
and optimal mutation strategy for complex optimization
problem, " Appl. Soft Comput., 2020.
[34] Y. Song et al., " MPPCEDE: Multi-population parallel
co-evolutionary differential evolution for parameter
optimization, " Energ. Convers. Manage., vol. 228, 2021.
[35] K. Krawiec, " Genetic programming-based construction
of features for machine learning and knowledge discovery
tasks, " GPEM, vol. 3, no. 4, pp. 329-343, 2002.
[36] L. Guo, D. Rivero, J. Dorado, C. R. Munteanu, and
A. Pazos, " Automatic feature extraction using genetic
programming: An application to epileptic EEG classification, "
Expert Syst. Appl., vol. 38, no. 8, pp. 10,425-
10,436, 2011.
[37] Y. Bi, B. Xue, and M. Zhang, " Genetic programming
with image-related operators and a flexible program
structure for feature learning in image classification, "
AUGUST 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 93
IEEE Computational Intelligence Magazine - August 2021
Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - August 2021
Contents
IEEE Computational Intelligence Magazine - August 2021 - Cover1
IEEE Computational Intelligence Magazine - August 2021 - Cover2
IEEE Computational Intelligence Magazine - August 2021 - Contents
IEEE Computational Intelligence Magazine - August 2021 - 2
IEEE Computational Intelligence Magazine - August 2021 - 3
IEEE Computational Intelligence Magazine - August 2021 - 4
IEEE Computational Intelligence Magazine - August 2021 - 5
IEEE Computational Intelligence Magazine - August 2021 - 6
IEEE Computational Intelligence Magazine - August 2021 - 7
IEEE Computational Intelligence Magazine - August 2021 - 8
IEEE Computational Intelligence Magazine - August 2021 - 9
IEEE Computational Intelligence Magazine - August 2021 - 10
IEEE Computational Intelligence Magazine - August 2021 - 11
IEEE Computational Intelligence Magazine - August 2021 - 12
IEEE Computational Intelligence Magazine - August 2021 - 13
IEEE Computational Intelligence Magazine - August 2021 - 14
IEEE Computational Intelligence Magazine - August 2021 - 15
IEEE Computational Intelligence Magazine - August 2021 - 16
IEEE Computational Intelligence Magazine - August 2021 - 17
IEEE Computational Intelligence Magazine - August 2021 - 18
IEEE Computational Intelligence Magazine - August 2021 - 19
IEEE Computational Intelligence Magazine - August 2021 - 20
IEEE Computational Intelligence Magazine - August 2021 - 21
IEEE Computational Intelligence Magazine - August 2021 - 22
IEEE Computational Intelligence Magazine - August 2021 - 23
IEEE Computational Intelligence Magazine - August 2021 - 24
IEEE Computational Intelligence Magazine - August 2021 - 25
IEEE Computational Intelligence Magazine - August 2021 - 26
IEEE Computational Intelligence Magazine - August 2021 - 27
IEEE Computational Intelligence Magazine - August 2021 - 28
IEEE Computational Intelligence Magazine - August 2021 - 29
IEEE Computational Intelligence Magazine - August 2021 - 30
IEEE Computational Intelligence Magazine - August 2021 - 31
IEEE Computational Intelligence Magazine - August 2021 - 32
IEEE Computational Intelligence Magazine - August 2021 - 33
IEEE Computational Intelligence Magazine - August 2021 - 34
IEEE Computational Intelligence Magazine - August 2021 - 35
IEEE Computational Intelligence Magazine - August 2021 - 36
IEEE Computational Intelligence Magazine - August 2021 - 37
IEEE Computational Intelligence Magazine - August 2021 - 38
IEEE Computational Intelligence Magazine - August 2021 - 39
IEEE Computational Intelligence Magazine - August 2021 - 40
IEEE Computational Intelligence Magazine - August 2021 - 41
IEEE Computational Intelligence Magazine - August 2021 - 42
IEEE Computational Intelligence Magazine - August 2021 - 43
IEEE Computational Intelligence Magazine - August 2021 - 44
IEEE Computational Intelligence Magazine - August 2021 - 45
IEEE Computational Intelligence Magazine - August 2021 - 46
IEEE Computational Intelligence Magazine - August 2021 - 47
IEEE Computational Intelligence Magazine - August 2021 - 48
IEEE Computational Intelligence Magazine - August 2021 - 49
IEEE Computational Intelligence Magazine - August 2021 - 50
IEEE Computational Intelligence Magazine - August 2021 - 51
IEEE Computational Intelligence Magazine - August 2021 - 52
IEEE Computational Intelligence Magazine - August 2021 - 53
IEEE Computational Intelligence Magazine - August 2021 - 54
IEEE Computational Intelligence Magazine - August 2021 - 55
IEEE Computational Intelligence Magazine - August 2021 - 56
IEEE Computational Intelligence Magazine - August 2021 - 57
IEEE Computational Intelligence Magazine - August 2021 - 58
IEEE Computational Intelligence Magazine - August 2021 - 59
IEEE Computational Intelligence Magazine - August 2021 - 60
IEEE Computational Intelligence Magazine - August 2021 - 61
IEEE Computational Intelligence Magazine - August 2021 - 62
IEEE Computational Intelligence Magazine - August 2021 - 63
IEEE Computational Intelligence Magazine - August 2021 - 64
IEEE Computational Intelligence Magazine - August 2021 - 65
IEEE Computational Intelligence Magazine - August 2021 - 66
IEEE Computational Intelligence Magazine - August 2021 - 67
IEEE Computational Intelligence Magazine - August 2021 - 68
IEEE Computational Intelligence Magazine - August 2021 - 69
IEEE Computational Intelligence Magazine - August 2021 - 70
IEEE Computational Intelligence Magazine - August 2021 - 71
IEEE Computational Intelligence Magazine - August 2021 - 72
IEEE Computational Intelligence Magazine - August 2021 - 73
IEEE Computational Intelligence Magazine - August 2021 - 74
IEEE Computational Intelligence Magazine - August 2021 - 75
IEEE Computational Intelligence Magazine - August 2021 - 76
IEEE Computational Intelligence Magazine - August 2021 - 77
IEEE Computational Intelligence Magazine - August 2021 - 78
IEEE Computational Intelligence Magazine - August 2021 - 79
IEEE Computational Intelligence Magazine - August 2021 - 80
IEEE Computational Intelligence Magazine - August 2021 - 81
IEEE Computational Intelligence Magazine - August 2021 - 82
IEEE Computational Intelligence Magazine - August 2021 - 83
IEEE Computational Intelligence Magazine - August 2021 - 84
IEEE Computational Intelligence Magazine - August 2021 - 85
IEEE Computational Intelligence Magazine - August 2021 - 86
IEEE Computational Intelligence Magazine - August 2021 - 87
IEEE Computational Intelligence Magazine - August 2021 - 88
IEEE Computational Intelligence Magazine - August 2021 - 89
IEEE Computational Intelligence Magazine - August 2021 - 90
IEEE Computational Intelligence Magazine - August 2021 - 91
IEEE Computational Intelligence Magazine - August 2021 - 92
IEEE Computational Intelligence Magazine - August 2021 - 93
IEEE Computational Intelligence Magazine - August 2021 - 94
IEEE Computational Intelligence Magazine - August 2021 - 95
IEEE Computational Intelligence Magazine - August 2021 - 96
IEEE Computational Intelligence Magazine - August 2021 - Cover3
IEEE Computational Intelligence Magazine - August 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com