IEEE Computational Intelligence Magazine - November 2021 - 37
Acknowledgment
This work is supported under the Fundamental Research
Funds for Key Project of Science and Technology Innovation
2030 supported by the Ministry of Science and Technology of
China (Grant No. 2018B030312003), National Natural Science
Foundation of China (Grant No. 62076098), and Program for
Guangdong Introducing Innovative and Entrepreneurial Teams
(Grant No.: 2017ZT07X183).
References
[1] S. Wang, J. Liu, and Y. Jin, " Robust structural balance in signed networks using a multiobjective
evolutionary algorithm, " IEEE Comput. Intell. Mag., vol. 15, no. 2, pp. 24-35,
2020. doi: 10.1109/MCI.2020.2976183.
[2] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, " Platemo: A matlab platform for evolutionary
multi-objective optimization [Educational Forum], " IEEE Comput. Intell. Mag., vol.
12, no. 4, pp. 73-87, 2017. doi: 10.1109/MCI.2017.2742868.
[3] Y. Tian, R. Cheng, X. Zhang, M. Li, and Y. Jin, " Diversity assessment of multiobjective
evolutionary algorithms: Performance metric and benchmark problems [Research
Frontier], " IEEE Comput. Intell. Mag., vol. 14, no. 3, pp. 61-74, 2019. doi: 10.1109/
MCI.2019.2919398.
[4] X. Zhang, F. Duan, L. Zhang, F. Cheng, Y. Jin, and K. Tang, " Pattern recommendation
in task-oriented applications: A multi-objective perspective [Application
Notes], " IEEE Comput. Intell. Mag., vol. 12, no. 3, pp. 43-53, 2017. doi: 10.1109/
MCI.2017.2708578.
[5] L. Chen, H. Liu, Z. Fan, S. Xie, and E. D. Goodman, " Modeling the tracking area
planning problem using an evolutionary multi-objective algorithm, " IEEE Comput. Intell.
Mag., vol. 12, no. 1, pp. 29-41, 2017. doi: 10.1109/MCI.2016.2627669.
[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, " A fast and elitist multiobjective
genetic algorithm: NSGA-II, " IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197,
2002. doi: 10.1109/4235.996017.
[7] E. Zitzler, M. Laumanns, and L. Thiele, " SPEA2: Improving the strength pareto evolutionary
algorithm, " TIK-Rep., vol. 103, 2001.
[8] Q. Zhang and H. Li, " MOEA/D: A multiobjective evolutionary algorithm based on
decomposition, " IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712-731, 2007.
[9] T. Murata and M. Gen, " Cellular genetic algorithm for multi-objective optimization, "
in Proc. 4th Asian Fuzzy Syst. Symp. Citeseer, 2002, pp. 538-542.
[10] S. Jiang, J. Zhang, Y. Ong, A. N. Zhang, and P. S. Tan, " A simple and fast hypervolume
indicator-based multiobjective evolutionary algorithm, " IEEE Trans. Cybern., vol.
45, no. 10, pp. 2202-2213, 2015. doi: 10.1109/TCYB.2014.2367526.
[11] E. Zitzler and S. Künzli, " Indicator-based selection in multiobjective search, " in Parallel
Problem Solving from Nat. - PPSN VIII, X. Yao et al., Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 832-842.
[12] A. Gupta, Y. Ong, and L. Feng, " Insights on transfer optimization: Because experience
is the best teacher, " IEEE Trans. Emerg. Topics Comput. Intell., vol. 2, no. 1, pp. 51-64,
2018. doi: 10.1109/TETCI.2017.2769104.
[13] A. Gupta, Y.-S. Ong, and L. Feng, " Multifactorial evolution: Toward evolutionary
multitasking, " IEEE Trans. Evol. Comput., vol. 20, no. 3, pp. 343-357, 2016. doi: 10.1109/
TEVC.2015.2458037.
[14] A. Gupta, Y. S. Ong, B. Da, L. Feng, and S. D. Handoko, " Landscape synergy in evolutionary
multitasking, " in Proc. IEEE Congr. Evol. Comput. (CEC), 2016, pp. 3076-3083.
[15] K. K. Bali, Y.-S. Ong, A. Gupta, and P. S. Tan, " Multifactorial evolutionary algorithm
with online transfer parameter estimation: MFEA-II, " IEEE Trans. Evol. Comput.,
vol. 24, no. 1, pp. 69-83, 2019. doi: 10.1109/TEVC.2019.2906927.
[16] Y. Chen, J. Zhong, L. Feng, and J. Zhang, " An adaptive archive-based evolutionary
framework for many-task optimization, " IEEE Trans. Emerg. Topics Comput. Intell., vol. 4,
no. 3, pp. 369-384, 2020. doi: 10.1109/TETCI.2019.2916051.
[17] B. Da, A. Gupta, and Y.-S. Ong, " Curbing negative influences online for seamless
transfer evolutionary optimization, " IEEE Trans. Cybern., vol. 49, no. 12, pp. 4365-4378,
2018. doi: 10.1109/TCYB.2018.2864345.
[18] S. Huang, J. Zhong, and W. Yu, " Surrogate-assisted evolutionary framework with
adaptive knowledge transfer for multi-task optimization, " IEEE Trans. Emerg. Topics Comput.,
2019.
[19] Q. Shang et al., " A preliminary study of adaptive task selection in explicit evolutionary
many-tasking, " in Proc. IEEE Congr. Evol. Comput. (CEC), 2019, pp. 2153-2159.
[20] J. Zhong, L. Feng, W. Cai, and Y. S. Ong, " Multifactorial genetic programming
for symbolic regression problems, " IEEE Trans. Syst., Man, Cyben., Syst., vol. 50,
no. 11, pp. 4492-4505, 2020. doi: 10.1109/TSMC.2018.2853719.
[21] A. T. W. Min, Y.-S. Ong, A. Gupta, and C.-K. Goh, " Multiproblem surrogates:
Transfer evolutionary multiobjective optimization of computationally expensive
problems, " IEEE Trans. Evol. Comput., vol. 23, no. 1, pp. 15-28, 2017. doi: 10.1109/
TEVC.2017.2783441.
[22] D. Wu and X. Tan, " Multitasking genetic algorithm (mtga) for fuzzy system optimization, "
IEEE Trans. Fuzzy Syst., vol. 28, no. 6, pp. 1050-1061, 2020. doi: 10.1109/
TFUZZ.2020.2968863.
[23] R. Sagarna and Y. Ong, " Concurrently searching branches in software tests generation
through multitask evolution, " in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), 2016,
pp. 1-8.
[24] G. Yokoya, H. Xiao, and T. Hatanaka, " Multifactorial optimization using artificial
bee colony and its application to car structure design optimization, " in Proc. IEEE Congr.
Evol. Comput. (CEC), 2019, pp. 3404-3409.
[25] J. Lin, H. L. Liu, K. C. Tan, and F. Gu, " An effective knowledge transfer approach for
multiobjective multitasking optimization, " IEEE Trans. Cybern., pp. 1-11, 2020.
[26] C. Yang, J. Ding, K. C. Tan, and Y. Jin, " Two-stage assortative mating for multiobjective
multifactorial evolutionary optimization, " in Proc. IEEE 56th Annu. Conf. Decision
Control (CDC), 2017, pp. 76-81.
[27] J. Lin, H. L. Liu, B. Xue, M. Zhang, and F. Gu, " Multiobjective multitasking optimization
based on incremental learning, " IEEE Trans. Evol. Comput., vol. 24, no. 5, pp.
824-838, 2020. doi: 10.1109/TEVC.2019.2962747.
[28] Z. Chen, Y. Zhou, X. He, and J. Zhang, " Learning task relationships in evolutionary
multitasking for multiobjective continuous optimization, " IEEE Trans. Cybern., pp.
1-12, 2020.
[29] C. Wang and S. Mahadevan, " Heterogeneous domain adaptation using manifold
alignment, " in IJCAI Proc.-Int. Joint Conf. Artif. Intell., 2011, vol. 22, no. 1, p. 1541.
[30] Z. Liang, W. Liang, X. Xu, and Z. Zhu, " A two stage adaptive knowledge transfer
evolutionary multi-tasking based on population distribution for multi/many-objective
optimization, " 2020, arXiv:2001.00810.
[31] Y. Chen, J. Zhong, and M. Tan, " A fast memetic multi-objective differential evolution
for multi-tasking optimization, " in Proc. IEEE Congr. Evol. Comput. (CEC), 2018, pp. 1-8.
[32] J. Zhang and A. C. Sanderson, " Jade: Adaptive differential evolution with optional
external archive, " IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945-958, 2009. doi:
10.1109/TEVC.2009.2014613.
[33] Z. Liang, J. Zhang, L. Feng, and Z. Zhu, " A hybrid of genetic transform and hyperrectangle
search strategies for evolutionary multi-tasking, " Expert Syst. Appl., vol. 138,
p. 112798, 2019.
[34] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, " Opposition-based differential
evolution, " IEEE Trans. Evol. Comput., vol. 12, no. 1, pp. 64-79, 2008. doi: 10.1109/
TEVC.2007.894200.
[35] Y.-W. Wen and C.-K. Ting, " Parting ways and reallocating resources in evolutionary
multitasking, " in Proc. IEEE Congr. Evol. Comput. (CEC), 2017, pp. 2404-2411.
[36] L. Feng, L. Zhou, J. Zhong, A. Gupta, Y.-S. Ong, K.-C. Tan, and A. K. Qin, " Evolutionary
multitasking via explicit autoencoding, " IEEE Trans. Cybern., vol. 49, no. 9,
pp. 3457-3470, 2018. doi: 10.1109/TCYB.2018.2845361.
[37] Z. Tang, M. Gong, Y. Wu, W. Liu, and Y. Xie, " Regularized evolutionary multitask
optimization: Learning to inter-task transfer in aligned subspace, " IEEE Trans. Evol.
Comput., p. 1, 2020.
[38] S. Yao, Z. Dong, X. Wang, and L. Ren, " A multiobjective multifactorial optimization
algorithm based on decomposition and dynamic resource allocation strategy, " Inf.
Sci., vol. 511, pp. 18-35, 2020. doi: 10.1016/j.ins.2019.09.058.
[39] Q. Zhang, W. Liu, and H. Li, " The performance of a new version of moea/d on cec09
unconstrained mop test instances, " in Proc. IEEE Congr. Evol. Comput., 2009, pp. 203-208.
[40] M. Gong, Z. Tang, H. Li, and J. Zhang, " Evolutionary multitasking with dynamic
resource allocating strategy, " IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 858-869, 2019.
doi: 10.1109/TEVC.2019.2893614.
[41] S. Jiang, Y. Ong, J. Zhang, and L. Feng, " Consistencies and contradictions of performance
metrics in multiobjective optimization, " IEEE Trans. Cybern., vol. 44, no. 12,
pp. 2391-2404, 2014.
[42] E. Zitzler, D. Brockhoff, and L. Thiele, " The hypervolume indicator revisited: On
the design of pareto-compliant indicators via weighted integration, " in Evolutionary MultiCriterion
Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 862-876.
[43] A. Gupta, Y.-S. Ong, L. Feng, and K. C. Tan, " Multiobjective multifactorial optimization
in evolutionary multitasking, " IEEE Trans. Cybern., vol. 47, no. 7, pp. 1652-1665,
2016. doi: 10.1109/TCYB.2016.2554622.
[44] Y. Yuan et al., " Evolutionary multitasking for multiobjective continuous optimization:
Benchmark problems, performance metrics and baseline results, " 2017, arXiv:1706.02766.
[45] D. A. Van Veldhuizen and G. B. Lamont, " Multiobjective evolutionary algorithm
research: A history and analysis, " Citeseer, Tech. Rep., 1998.
[46] K. K. Bali, A. Gupta, Y.-S. Ong, and P. S. Tan, " Cognizant multitasking in multiobjective
multifactorial evolution: MO-MFEA-II, " IEEE Trans. Cybern., vol. 51, no. 4,
pp. 1784-1796, 2021. doi: 10.1109/TCYB.2020.2981733.
[47] N. Wang, Q. Xu, R. Fei, J. Yang, and L. Wang, " Rigorous analysis of multi-factorial
evolutionary algorithm as multi-population evolution model, " Int. J. Comput. Intell. Syst.,
vol. 12, pp. 1121-1133, 2019.
[48] G. Li, Q. Zhang, and W. Gao, " Multipopulation evolution framework for multifactorial
optimization, " in Proc. Genetic Evol. Comput. Conf. Comp., 2018, pp. 215-216. doi:
10.1145/3205651.3205761.
[49] R. Hashimoto, H. Ishibuchi, N. Masuyama, and Y. Nojima, " Analysis of evolutionary
multi-tasking as an island model, " in Proc. Genetic Evol. Comput. Conf. Comp., 2018,
pp. 1894-1897. doi: 10.1145/3205651.3208228.
[50] H. Li, Y.-S. Ong, M. Gong, and Z. Wang, " Evolutionary multitasking sparse reconstruction:
Framework and case study, " IEEE Trans. Evol. Comput., vol. 23, no. 5, pp.
733-747, 2019. doi: 10.1109/TEVC.2018.2881955.
[51] W. Tang, Z. Shi, Y. Wu, and C. Zhang, " Sparse unmixing of hyperspectral data using
spectral a priori information, " IEEE Trans. Geosci. Remote Sens., vol. 53, no. 2, pp. 770-783,
2015.
[52] H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, " How to specify a reference
point in hypervolume calculation for fair performance comparison, " Evol. Comput.,
vol. 26, no. 3, pp. 411-440, 2018. doi: 10.1162/evco_a_00226.
NOVEMBER 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 37
IEEE Computational Intelligence Magazine - November 2021
Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - November 2021
IEEE Computational Intelligence Magazine - November 2021 - Cover1
IEEE Computational Intelligence Magazine - November 2021 - Cover2
IEEE Computational Intelligence Magazine - November 2021 - 1
IEEE Computational Intelligence Magazine - November 2021 - 2
IEEE Computational Intelligence Magazine - November 2021 - 3
IEEE Computational Intelligence Magazine - November 2021 - 4
IEEE Computational Intelligence Magazine - November 2021 - 5
IEEE Computational Intelligence Magazine - November 2021 - 6
IEEE Computational Intelligence Magazine - November 2021 - 7
IEEE Computational Intelligence Magazine - November 2021 - 8
IEEE Computational Intelligence Magazine - November 2021 - 9
IEEE Computational Intelligence Magazine - November 2021 - 10
IEEE Computational Intelligence Magazine - November 2021 - 11
IEEE Computational Intelligence Magazine - November 2021 - 12
IEEE Computational Intelligence Magazine - November 2021 - 13
IEEE Computational Intelligence Magazine - November 2021 - 14
IEEE Computational Intelligence Magazine - November 2021 - 15
IEEE Computational Intelligence Magazine - November 2021 - 16
IEEE Computational Intelligence Magazine - November 2021 - 17
IEEE Computational Intelligence Magazine - November 2021 - 18
IEEE Computational Intelligence Magazine - November 2021 - 19
IEEE Computational Intelligence Magazine - November 2021 - 20
IEEE Computational Intelligence Magazine - November 2021 - 21
IEEE Computational Intelligence Magazine - November 2021 - 22
IEEE Computational Intelligence Magazine - November 2021 - 23
IEEE Computational Intelligence Magazine - November 2021 - 24
IEEE Computational Intelligence Magazine - November 2021 - 25
IEEE Computational Intelligence Magazine - November 2021 - 26
IEEE Computational Intelligence Magazine - November 2021 - 27
IEEE Computational Intelligence Magazine - November 2021 - 28
IEEE Computational Intelligence Magazine - November 2021 - 29
IEEE Computational Intelligence Magazine - November 2021 - 30
IEEE Computational Intelligence Magazine - November 2021 - 31
IEEE Computational Intelligence Magazine - November 2021 - 32
IEEE Computational Intelligence Magazine - November 2021 - 33
IEEE Computational Intelligence Magazine - November 2021 - 34
IEEE Computational Intelligence Magazine - November 2021 - 35
IEEE Computational Intelligence Magazine - November 2021 - 36
IEEE Computational Intelligence Magazine - November 2021 - 37
IEEE Computational Intelligence Magazine - November 2021 - 38
IEEE Computational Intelligence Magazine - November 2021 - 39
IEEE Computational Intelligence Magazine - November 2021 - 40
IEEE Computational Intelligence Magazine - November 2021 - 41
IEEE Computational Intelligence Magazine - November 2021 - 42
IEEE Computational Intelligence Magazine - November 2021 - 43
IEEE Computational Intelligence Magazine - November 2021 - 44
IEEE Computational Intelligence Magazine - November 2021 - 45
IEEE Computational Intelligence Magazine - November 2021 - 46
IEEE Computational Intelligence Magazine - November 2021 - 47
IEEE Computational Intelligence Magazine - November 2021 - 48
IEEE Computational Intelligence Magazine - November 2021 - 49
IEEE Computational Intelligence Magazine - November 2021 - 50
IEEE Computational Intelligence Magazine - November 2021 - 51
IEEE Computational Intelligence Magazine - November 2021 - 52
IEEE Computational Intelligence Magazine - November 2021 - 53
IEEE Computational Intelligence Magazine - November 2021 - 54
IEEE Computational Intelligence Magazine - November 2021 - 55
IEEE Computational Intelligence Magazine - November 2021 - 56
IEEE Computational Intelligence Magazine - November 2021 - 57
IEEE Computational Intelligence Magazine - November 2021 - 58
IEEE Computational Intelligence Magazine - November 2021 - 59
IEEE Computational Intelligence Magazine - November 2021 - 60
IEEE Computational Intelligence Magazine - November 2021 - 61
IEEE Computational Intelligence Magazine - November 2021 - 62
IEEE Computational Intelligence Magazine - November 2021 - 63
IEEE Computational Intelligence Magazine - November 2021 - 64
IEEE Computational Intelligence Magazine - November 2021 - 65
IEEE Computational Intelligence Magazine - November 2021 - 66
IEEE Computational Intelligence Magazine - November 2021 - 67
IEEE Computational Intelligence Magazine - November 2021 - 68
IEEE Computational Intelligence Magazine - November 2021 - 69
IEEE Computational Intelligence Magazine - November 2021 - 70
IEEE Computational Intelligence Magazine - November 2021 - 71
IEEE Computational Intelligence Magazine - November 2021 - 72
IEEE Computational Intelligence Magazine - November 2021 - 73
IEEE Computational Intelligence Magazine - November 2021 - 74
IEEE Computational Intelligence Magazine - November 2021 - 75
IEEE Computational Intelligence Magazine - November 2021 - 76
IEEE Computational Intelligence Magazine - November 2021 - 77
IEEE Computational Intelligence Magazine - November 2021 - 78
IEEE Computational Intelligence Magazine - November 2021 - 79
IEEE Computational Intelligence Magazine - November 2021 - 80
IEEE Computational Intelligence Magazine - November 2021 - 81
IEEE Computational Intelligence Magazine - November 2021 - 82
IEEE Computational Intelligence Magazine - November 2021 - 83
IEEE Computational Intelligence Magazine - November 2021 - 84
IEEE Computational Intelligence Magazine - November 2021 - 85
IEEE Computational Intelligence Magazine - November 2021 - 86
IEEE Computational Intelligence Magazine - November 2021 - 87
IEEE Computational Intelligence Magazine - November 2021 - 88
IEEE Computational Intelligence Magazine - November 2021 - 89
IEEE Computational Intelligence Magazine - November 2021 - 90
IEEE Computational Intelligence Magazine - November 2021 - 91
IEEE Computational Intelligence Magazine - November 2021 - 92
IEEE Computational Intelligence Magazine - November 2021 - 93
IEEE Computational Intelligence Magazine - November 2021 - 94
IEEE Computational Intelligence Magazine - November 2021 - 95
IEEE Computational Intelligence Magazine - November 2021 - 96
IEEE Computational Intelligence Magazine - November 2021 - 97
IEEE Computational Intelligence Magazine - November 2021 - 98
IEEE Computational Intelligence Magazine - November 2021 - 99
IEEE Computational Intelligence Magazine - November 2021 - 100
IEEE Computational Intelligence Magazine - November 2021 - Cover3
IEEE Computational Intelligence Magazine - November 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com