IEEE Computational Intelligence Magazine - November 2021 - 99
the best fitnesses found in both cases are
quite close. Consequently, the bloat
effect is obvious for the addition of two
types of NPs per step, but the same can
not be said for the case of adding one
type of NPs.
VII Conclusion
The effects of genome length are studied
here both on an abstract model and
a real-life problem of designing a NPbased
anti-cancer treatment. Firstly, the
influence that the ruggedness of the fitness
function landscape has on the
genome length through evolution is
investigated with the abstract NK
model. Growth is observed, with the
expansion of genome lengths not
obstructed by the ruggedness of the fitness
landscape. On the contrary, the
expansion of genome lengths can be
encouraged by the topology of such
landscapes, where typical peaks of low
amplitude increase the possibility of
higher fitness outcome per the added
randomly generated sequence. It is noteworthy
that no specific advantage is
implemented in the abstract model for
larger lengths of genomes, thus the
observed limited growth (contrast to
what happens during bloat situations) is
explicitly due to the inherent nature of
evolution over rugged fitness landscapes.
Then, by optimizing the design of
NP drug-delivery systems in a cancer
simulator, we investigate the increase of
the genome length in a real-world problem.
Despite the fact that no indication
of the best treatment composition (or
the number of different types of NPs) is
included in the model, evolved solutions
converge to treatments with eight different
types of NPs, for the method that
adds one type of NPs per step. For the
method that adds two types of NPs per
step, evolved solutions converge to
slightly more complex treatments (i.e., 9
types of NPs). This general behavior of
higher growth with larger sequences
added correlates well with observed
behavior in the NK model. Moreover, as
deduced here and by using other versions
of the NK model (after [24]), the
gradual growth through small step
increases in genome length appears
more appropriate in the application
domain. That is, whilst the fitness of the
solutions found is quite similar, the
higher complexity of NP-based cancer
treatment drug delivery systems is harder
to produce, will probably prove to be
more toxic, and has the greater potential
for unintended consequences when
used in vivo.
Acknowledgment
This work was supported by the European
Research Council under the European
Union's Horizon 2020 research
and innovation program under grant
agreement No. 800983.
References
[1] L. J. Fogel, A. J. Owens, and M. J. Walsh, " Artificial
intelligence through a simulation of evolution, " in Proc.
2nd Cybernetics Sci. Symp., 1965.
[2] M. L. Ryerkerk, R. C. Averill, K. Deb, and E. D.
Goodman, " A survey of evolutionary algorithms using
metameric representations, " Genetic Program. Evolvable
Mach., vol. 20, no. 4, pp. 441-478, 2019. doi: 10.1007/
s10710-019-09356-2.
[3] M. L. Ryerkerk, R. C. Averill, K. Deb, and E. D.
Goodman, " Solving metameric variable-length optimization
problems using genetic algorithms, " Genetic Program.
Evolvable Mach., vol. 18, no. 2, pp. 247-277, 2017.
[4] J. Serrano González, M. Burgos Payán, J. M. R.
Santos, and F. González-Longatt, " A review and recent
developments in the optimal wind-turbine micro-siting
problem, " Renew. Sustain. Energ. Rev., vol. 30, pp. 133-
144, 2014. doi: 10.1016/j.rser.2013.09.027.
[5] Y. Chen, H. Li, K. Jin, and Q. Song, " Wind farm
layout optimization using genetic algorithm with different
hub height wind turbines, " Energ. Conv. Manag.,
vol. 70, pp. 56-65, 2013. doi: 10.1016/j.enconman.2013.02.007.
[6]
F. Luna, J. J. Durillo, A. J. Nebro, and E. Alba, " Evolutionary
algorithms for solving the automatic cell planning
problem: a survey, " Eng. Optim., vol. 42, no. 7, pp.
671-690, 2010. doi: 10.1080/03052150903426850.
[7] C.-K. Ting, C.-N. Lee, H.-C. Chang, and J.-S. Wu,
" Wireless heterogeneous transmitter placement using
multiobjective variable-length genetic algorithm, " IEEE
Trans. Syst., Man, Cybern. B. Cybern., vol. 39, no. 4, pp.
945-958, 2009.
[8] Z. Fei, B. Li, S. Yang, C. Xing, H. Chen, and L. Hanzo,
" A survey of multi-objective optimization in wireless
sensor networks: Metrics, algorithms, and open problems, "
IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp.
550-586, 2016. doi: 10.1109/COMST.2016.2610578.
[9] K.-J. Kim and S.-B. Cho, " Automated synthesis of
multiple analog circuits using evolutionary computation
for redundancy-based fault-tolerance, " Appl. Soft Comput.,
vol. 12, no. 4, pp. 1309-1321, 2012. doi: 10.1016/j.
asoc.2011.12.002.
[10] R. S. Zebulum, M. Vellasco, and M. A. Pacheco,
" Variable length representation in evolutionary electronics, "
Evol. Comput., vol. 8, no. 1, pp. 93-120, 2000. doi:
10.1162/106365600568112.
[11] Y. A. Sapargaliyev and T. G. Kalganova, " Openended
evolution to discover analogue circuits for beyond
conventional
Mach., vol. 13, no. 4, pp. 411-443, 2012. doi: 10.1007/
s10710-012-9163-8.
[12] X. Yao and Y. Liu, " A new evolutionary system for evolving
artificial neural networks, " IEEE Trans. Neural Netw.,
vol. 8, no. 3, pp. 694-713, 1997. doi: 10.1109/72.572107.
[13] X. Yao, " Evolving artificial neural networks, " Proc.
IEEE, vol. 87, no. 9, pp. 1423-1447, 1999.
applications, " Genetic Program. Evolvable
[14] K. O. Stanley and R. Miikkulainen, " Evolving
neural networks through augmenting topologies, " Evol.
Comput., vol. 10, no. 2, pp. 99-127, 2002. doi: 10.1162/
106365602320169811.
[15] P. P. Palmes, T. Hayasaka, and S. Usui, " Mutationbased
genetic neural network, " IEEE Trans. Neural Netw.,
vol. 16, no. 3, pp. 587-600, 2005.
[16] P. Angeline, G. Saunders, and J. Pollack, " An evolutionary
algorithm that constructs recurrent neural
networks, " IEEE Trans. Neural Netw., vol. 5, no. 1, pp.
54-65, 1994. doi: 10.1109/72.265960.
[17] S. Ohno, Evolution by Gene Duplication. New York,
NY, USA: Springer-Verlag, 1970.
[18] S. P. Otto and J. Whitton, " Polyploid incidence
and evolution, " Annu. Rev. Genetics, vol. 34, no. 1, pp.
401-437, 2000. doi: 10.1146/annurev.genet.34.1.401.
[19] A. L. Hughes, " The evolution of functionally novel
proteins after gene duplication, " in Proc. Royal Soc. London
B, Biol. Sci., 1994, vol. 256, no. 1346, pp. 119-124.
[20] S. Kauffman and S. Levin, " Towards a general theory
of adaptive walks on rugged landscapes, " J. Theoret. Biol.,
vol. 128, no. 1, pp. 11-45, 1987. doi: 10.1016/S0022-5193
(87)80029-2.
[21] A. Ghaffarizadeh, R. Heiland, S. H. Friedman, S.
M. Mumenthaler, and P. Macklin, " PhysiCell: an open
source physics-based cell simulator for 3-D multicellular
systems, " PLoS Comput. Biol., vol. 14, no. 2, p. e1005991,
2018. doi: 10.1371/journal.pcbi.1005991.
[22] A. Ghaffarizadeh, S. H. Friedman, and P. Macklin,
" BioFVM: An efficient, parallelized diffusive transport
solver for 3-D biological simulations, " Bioinformatics, vol.
32, no. 8, pp. 1256-1258, 2015. doi: 10.1093/bioinformatics/btv730.
[23]
S. A. Kauffman, The Origins of Order: Self-organization
and Selection in Evolution. London, U.K.: Oxford Univ.
Press, 1993.
[24] I. Harvey, " Species adaptation genetic algorithms:
A basis for a continuing saga, " in Proc. 1st European Conf.
Artif. Life, 1992, pp. 346-354.
[25] J. Metzcar, Y. Wang, R. Heiland, and P. Macklin, " A
review of cell-based computational modeling in cancer
biology, " JCO Clin. Cancer Inf., vol. 2, pp. 1-13, 2019.
doi: 10.1200/CCI.18.00069.
[26] N. R. Stillman, M. Kovacevic, I. Balaz, and S. Hauert,
" In silico modelling of cancer nanomedicine, across
scales and transport barriers, " NPJ Comput. Mater., vol. 6,
no. 1, 2020. doi: 10.1038/s41524-020-00366-8.
[27] R. J. Preen, L. Bull, and A. Adamatzky, " Towards
an evolvable cancer treatment simulator, " Biosystems, vol.
182, pp. 1-7, 2019. doi: 10.1016/j.biosystems.2019.
05.005.
[28] M.-A. Tsompanas, L. Bull, A. Adamatzky, and I.
Balaz, " Haploid-diploid
evolution: Nature's memetic
algorithm, " 2019. [Online]. Available: https://arxiv.org/
abs/1911.07302
[29] M.-A. Tsompanas, L. Bull, A. Adamatzky, and I.
Balaz, " Utilizing differential evolution into optimizing
targeted cancer treatments, " in Modern Trends in Controlled
Stochastic Processes, A. Piunovskiy and Y. Zhang, Eds.
Cham, Switzerland: Springer, 2021, pp. 328-340.
[30] M.-A. Tsompanas, L. Bull, A. Adamatzky, and I.
Balaz, " Novelty search employed into the development
of cancer treatment simulations, " Inf. Med. Unlocked, vol.
19, p. 100347, 2020.
[31] J. Ozik, N. Collier, R. Heiland, G. An, and P. Macklin,
" Learning-accelerated discovery of immune-tumour
interactions, " Molecular Syst. Des. Eng., 2019.
[32] M.-A. Tsompanas, L. Bull, A. Adamatzky, and I.
Balaz, " Metameric representations on optimization of
nano particle cancer treatment, " Biocybern. Biomed. Eng.,
vol. 41, no. 2, pp. 352-361, 2021. doi: 10.1016/j.bbe.2021.
02.002.
[33] M.-A. Tsompanas, L. Bull, A. Adamatzky, and I.
Balaz, " In silico optimization of cancer therapies with
multiple types of nanoparticles applied at different
t imes, " Comput. Meth. Programs Biomed., vol. 200, p.
105886, 2021.
[34] L. Bull, " Coevolutionary species adaptation genetic
algorithms: growth and mutation on coupled fitness landscapes, "
in Proc. IEEE Congr. Evolutionary Comput., 2005,
vol. 1, pp. 559-564.
NOVEMBER 2021 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 99
https://arxiv.org/abs/1911.07302
https://arxiv.org/abs/1911.07302
IEEE Computational Intelligence Magazine - November 2021
Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - November 2021
IEEE Computational Intelligence Magazine - November 2021 - Cover1
IEEE Computational Intelligence Magazine - November 2021 - Cover2
IEEE Computational Intelligence Magazine - November 2021 - 1
IEEE Computational Intelligence Magazine - November 2021 - 2
IEEE Computational Intelligence Magazine - November 2021 - 3
IEEE Computational Intelligence Magazine - November 2021 - 4
IEEE Computational Intelligence Magazine - November 2021 - 5
IEEE Computational Intelligence Magazine - November 2021 - 6
IEEE Computational Intelligence Magazine - November 2021 - 7
IEEE Computational Intelligence Magazine - November 2021 - 8
IEEE Computational Intelligence Magazine - November 2021 - 9
IEEE Computational Intelligence Magazine - November 2021 - 10
IEEE Computational Intelligence Magazine - November 2021 - 11
IEEE Computational Intelligence Magazine - November 2021 - 12
IEEE Computational Intelligence Magazine - November 2021 - 13
IEEE Computational Intelligence Magazine - November 2021 - 14
IEEE Computational Intelligence Magazine - November 2021 - 15
IEEE Computational Intelligence Magazine - November 2021 - 16
IEEE Computational Intelligence Magazine - November 2021 - 17
IEEE Computational Intelligence Magazine - November 2021 - 18
IEEE Computational Intelligence Magazine - November 2021 - 19
IEEE Computational Intelligence Magazine - November 2021 - 20
IEEE Computational Intelligence Magazine - November 2021 - 21
IEEE Computational Intelligence Magazine - November 2021 - 22
IEEE Computational Intelligence Magazine - November 2021 - 23
IEEE Computational Intelligence Magazine - November 2021 - 24
IEEE Computational Intelligence Magazine - November 2021 - 25
IEEE Computational Intelligence Magazine - November 2021 - 26
IEEE Computational Intelligence Magazine - November 2021 - 27
IEEE Computational Intelligence Magazine - November 2021 - 28
IEEE Computational Intelligence Magazine - November 2021 - 29
IEEE Computational Intelligence Magazine - November 2021 - 30
IEEE Computational Intelligence Magazine - November 2021 - 31
IEEE Computational Intelligence Magazine - November 2021 - 32
IEEE Computational Intelligence Magazine - November 2021 - 33
IEEE Computational Intelligence Magazine - November 2021 - 34
IEEE Computational Intelligence Magazine - November 2021 - 35
IEEE Computational Intelligence Magazine - November 2021 - 36
IEEE Computational Intelligence Magazine - November 2021 - 37
IEEE Computational Intelligence Magazine - November 2021 - 38
IEEE Computational Intelligence Magazine - November 2021 - 39
IEEE Computational Intelligence Magazine - November 2021 - 40
IEEE Computational Intelligence Magazine - November 2021 - 41
IEEE Computational Intelligence Magazine - November 2021 - 42
IEEE Computational Intelligence Magazine - November 2021 - 43
IEEE Computational Intelligence Magazine - November 2021 - 44
IEEE Computational Intelligence Magazine - November 2021 - 45
IEEE Computational Intelligence Magazine - November 2021 - 46
IEEE Computational Intelligence Magazine - November 2021 - 47
IEEE Computational Intelligence Magazine - November 2021 - 48
IEEE Computational Intelligence Magazine - November 2021 - 49
IEEE Computational Intelligence Magazine - November 2021 - 50
IEEE Computational Intelligence Magazine - November 2021 - 51
IEEE Computational Intelligence Magazine - November 2021 - 52
IEEE Computational Intelligence Magazine - November 2021 - 53
IEEE Computational Intelligence Magazine - November 2021 - 54
IEEE Computational Intelligence Magazine - November 2021 - 55
IEEE Computational Intelligence Magazine - November 2021 - 56
IEEE Computational Intelligence Magazine - November 2021 - 57
IEEE Computational Intelligence Magazine - November 2021 - 58
IEEE Computational Intelligence Magazine - November 2021 - 59
IEEE Computational Intelligence Magazine - November 2021 - 60
IEEE Computational Intelligence Magazine - November 2021 - 61
IEEE Computational Intelligence Magazine - November 2021 - 62
IEEE Computational Intelligence Magazine - November 2021 - 63
IEEE Computational Intelligence Magazine - November 2021 - 64
IEEE Computational Intelligence Magazine - November 2021 - 65
IEEE Computational Intelligence Magazine - November 2021 - 66
IEEE Computational Intelligence Magazine - November 2021 - 67
IEEE Computational Intelligence Magazine - November 2021 - 68
IEEE Computational Intelligence Magazine - November 2021 - 69
IEEE Computational Intelligence Magazine - November 2021 - 70
IEEE Computational Intelligence Magazine - November 2021 - 71
IEEE Computational Intelligence Magazine - November 2021 - 72
IEEE Computational Intelligence Magazine - November 2021 - 73
IEEE Computational Intelligence Magazine - November 2021 - 74
IEEE Computational Intelligence Magazine - November 2021 - 75
IEEE Computational Intelligence Magazine - November 2021 - 76
IEEE Computational Intelligence Magazine - November 2021 - 77
IEEE Computational Intelligence Magazine - November 2021 - 78
IEEE Computational Intelligence Magazine - November 2021 - 79
IEEE Computational Intelligence Magazine - November 2021 - 80
IEEE Computational Intelligence Magazine - November 2021 - 81
IEEE Computational Intelligence Magazine - November 2021 - 82
IEEE Computational Intelligence Magazine - November 2021 - 83
IEEE Computational Intelligence Magazine - November 2021 - 84
IEEE Computational Intelligence Magazine - November 2021 - 85
IEEE Computational Intelligence Magazine - November 2021 - 86
IEEE Computational Intelligence Magazine - November 2021 - 87
IEEE Computational Intelligence Magazine - November 2021 - 88
IEEE Computational Intelligence Magazine - November 2021 - 89
IEEE Computational Intelligence Magazine - November 2021 - 90
IEEE Computational Intelligence Magazine - November 2021 - 91
IEEE Computational Intelligence Magazine - November 2021 - 92
IEEE Computational Intelligence Magazine - November 2021 - 93
IEEE Computational Intelligence Magazine - November 2021 - 94
IEEE Computational Intelligence Magazine - November 2021 - 95
IEEE Computational Intelligence Magazine - November 2021 - 96
IEEE Computational Intelligence Magazine - November 2021 - 97
IEEE Computational Intelligence Magazine - November 2021 - 98
IEEE Computational Intelligence Magazine - November 2021 - 99
IEEE Computational Intelligence Magazine - November 2021 - 100
IEEE Computational Intelligence Magazine - November 2021 - Cover3
IEEE Computational Intelligence Magazine - November 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com