IEEE Computational Intelligence Magazine - May 2022 - 101
[118] L. J. Wu, Z. H. Zhan, X. M. Hu, P. Guo, Y. Zhang,
and J. Zhang, " Multi-runway aircraft arrival scheduling:
A receding horizon control based ant colony system approach, "
in Proc. Congr. Evol. Comput., 2019, pp. 538-545.
[119] S. Caprì and M. Ignaccolo, " Genetic algorithms
for solving the aircraft-sequencing problem: The introduction
of departures into the dynamic model, " J. Air
Transp. Manag., vol. 10, no. 5, pp. 345-351, Sep. 2004,
doi: 10.1016/j.jairtraman.2004.05.004.
[120] G. Bencheikh, J. Boukachour, and A. E. H. Alaoui,
" A memetic algorithm to solve the dynamic multiple runway
aircraft landing problem, " J. King Saud Univ. - Comput.
Inf. Sci., vol. 28, no. 1, pp. 98-109, Jan. 2016, doi:
10.1016/j.jksuci.2015.09.002.
[121] Y. Hong, B. Choi, and Y. Kim, " Two-stage stochastic
programming based on particle swarm optimization
for aircraft sequencing and scheduling, " IEEE Trans. Intell.
Transp. Syst., vol. 20, no. 4, pp. 1365-1377, Apr. 2019,
doi: 10.1109/TITS.2018.2850000.
[122] K. Kölker and K. Lütjens, " Using genetic algorithms
to solve large-scale airline network planning
problems, " Transp. Res. Procedia, vol. 10, pp. 900-909,
2015, doi: 10.1016/j.trpro.2015.09.043.
[123] A. Abdelghany, K. Abdelghany, and F. Azadian,
" Airline flight schedule planning under competition, "
Comput. Oper. Res., vol. 87, pp. 20-39, Nov. 2017, doi:
10.1016/j.cor.2017.05.013.
[124] M. A. Kammoun and N. Rezg, " An efficient hybrid
approach for resolving the aircraft routing and rescheduling
problem, " J. Air Transp. Manag., vol. 71, pp. 73-87,
Aug. 2018, doi: 10.1016/j.jairtraman.2018.06.005.
[125] M. B. Ahmed, F. Z. Mansour, and M. Haouari,
" A two-level optimization approach for robust aircraft
routing and retiming, " Comput. Ind. Eng., vol. 112, pp.
586-594, Oct. 2017, doi: 10.1016/j.cie.2016.09.021.
[126] T. Zhang, J. Lin, B. Qiu, and Y. Fu, " Solving the
aircraft assigning problem by the ant colony algorithm, "
in Proc. Int. Conf. Inf. Manag. Eng., 2011, pp 179-187.
[127] T. Chou, T. Liu, C. Lee, and C. Jeng, " Method
of inequality-based multiobjective genetic algorithm for
domestic daily aircraft routing, " IEEE Trans. Syst., Man,
Cybern. A, Syst. Humans, vol. 38, no. 2, pp. 299-308,
Mar. 2008.
[128] R. Anzoom and M. A. A. Hasin, " Optimal fleet assignment
using ant colony algorithm, " in Proc. Int. Conf.
Prod. Oper. Manag. Soc., 2018, pp. 1-6.
[129] A. K. Yazdi, M. A. Kaviani, T. Hanne, and A. Ramos,
" A binary differential evolution algorithm for airline
revenue management: A case study, " Soft Comput.,
vol. 24, no. 18, pp. 14,221-14,234, Sept. 2020.
[130] Q. Ma, H. Song, and W. Zhu, " Low-carbon airline
fleet assignment: A compromise approach, " J. Air Transp.
Manag., vol. 68, pp. 86-102, May 2018, doi: 10.1016/j.
jairtraman.2017.04.005.
[131] Y. D. Ko, Y. J. Jang, and D. Y. Kim, " Strategic
airline operation considering the carbon constrained air
transport industry, " J. Air Transp. Manag., vol. 62, pp. 1-9,
Jul. 2017, doi: 10.1016/j.jairtraman.2017.02.004.
[132] " China Airlines Flight 611, " Wikipedia. Accessed:
Jan. 28, 2021. [Online]. Available: https://en.wikipedia.
org/wiki/China_Airlines_Flight_611
[133] A. E. E. Eltoukhy, Z. X. Wang, F. T. S. Chan, and S. H.
Chung, " Joint optimization using a leader-follower Stackelberg
game for coordinated configuration of stochastic
operational aircraft maintenance routing and maintenance
staffing, " Comput. Ind. Eng., vol. 125, pp 46-68, Nov. 2018,
doi: 10.1016/j.cie.2018.08.012.
[134] W. H. Ip, D. Wang, and V. Cho, " Aircraft ground
service scheduling problems and their genetic algorithm
with hybrid assignment and sequence encoding scheme, "
IEEE Syst. J., vol. 7, no. 4, pp. 649-657, Dec. 2013, doi:
10.1109/JSYST.2012.2196229.
[135] A. E. E. Eltoukhy, Z. X. Wang, F. T. S. Chan, S.
H. Chung, H.-L. Ma, and X. P. Wang, " Robust aircraft
maintenance routing problem using a turn-around time
reduction approach, " IEEE Trans. Syst., Man, Cybern.
Syst., vol. 50, no. 12, pp. 4919-4932, Dec. 2020, doi:
10.1109/TSMC.2019.2937648.
[136] M. Deveci and N. Ç. Demirel, " A survey of the
literature on airline crew scheduling, " Eng. Appl. Artif.
Intell., vol.74, pp. 54-69, 2018, doi: 10.1016/j.engappai.
2018.05.008.
[137] G.-F. Deng and W.-T. Lin, " Ant colony optimization-based
algorithm for airline crew scheduling problem, "
Expert Syst. Appl., vol. 38, no. 5, pp. 5787-5793,
Sep. 2011, doi: 10.1016/j.eswa.2010.10.053.
[138] M. Deveci and N. Ç. Demirel, " Evolutionary algorithms
for solving the airline crew pairing problem, "
Comput. Ind. Eng., vol. 115, pp. 389-406, Jan. 2018, doi:
10.1016/j.cie.2017.11.022.
[139] S. Z. Zhou, Z. H. Zhan, Z. G. Chen, S. Kwong,
and J. Zhang, " A multi-objective ant colony system algorithm
for airline crew rostering problem with fairness
and satisfaction, " IEEE Trans. Intell. Transp. Syst., vol.
22, no. 11, pp. 6784-6798, Nov. 2021, doi: 10.1109/
TITS.2020.2994779.
[140] Z. H. Zhan et al., " Multiple populations for multiple
objectives: A coevolutionary technique for solving multiobjective
optimization problems, " IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 445-463, Apr. 2013.
[141] Z. G. Chen et al., " Multiobjective cloud workflow
scheduling: A multiple populations ant colony system approach, "
IEEE Trans. Cybern., vol. 49, no. 8, pp. 2912-
2926, Aug. 2019, doi: 10.1109/TCYB.2018.2832640.
[142] C. Chen and J. Chou, " Multiobjective optimization
of airline crew roster recovery problems under
disruption conditions, " IEEE Trans. Syst., Man, Cybern.
Syst., vol. 47, no. 1, pp. 133-144, Jan. 2017, doi: 10.1109/
TSMC.2016.2560130.
[143] N. Souai and J. Teghem, " Genetic algorithm based
approach for the integrated airline crew-pairing and rostering
problem, " Eur. J. Oper. Res., vol. 199, no. 3, pp.
674-683, Dec. 2009, doi: 10.1016/j.ejor.2007.10.065.
[144] C. Chen, T. Liu, and J. Chou, " Integrated shorthaul
airline crew scheduling using multiobjective optimization
genetic algorithms, " IEEE Trans. Syst., Man,
Cybern. Syst., vol. 43, no. 5, pp. 1077-1090, Sep. 2013.
[145] N. Öner, H. Gultekin, and Ç. Koç, " The airport
shuttle bus scheduling problem, " Int. J. Prod. Res., vol.
59, no. 24, pp. 7400-7422, 2021, doi: 10.1080/00207543.
2020.1841317.
[146] D. Bao, J. Gu, Z. Di, and T. Zhang, " Optimization
of airport shuttle bus routes based on travel time reliability, "
Math. Problems Eng., Apr. 2018, Art. no. 2369350,
doi: 10.1155/2018/2369350.
[147] M. Wei, B. Jing, J. Yin, and Y. Zang, " A green
demand-responsive airport shuttle service problem with
time-varying speeds, " J. Adv. Transp., Sep. 2020, Art. no.
9853164, doi: 10.1155/2020/9853164.
[148] V. Ho-Huu, S. Hartjes, J. A. Pérez-Castán, H. G.
Visser, and R. Curran, " A multilevel optimization approach
to route design and flight allocation taking aircraft
sequence and separation constraints into account, "
Transp. Res. C, Transp. Emerg. Technol., vol. 117, Aug.
2020, Art. no. 102684, doi: 10.1016/j.trc.2020.102684.
[149] Q. Zhang and H. Li, " MOEA/D: A multiobjective
evolutionary algorithm based on decomposition, " IEEE
Trans. Evol. Comput., vol. 11, no. 6, pp. 712-731, Dec. 2007.
[150] D. González-Arribas, M. Soler, M. Sanjurjo-Rivo,
M. Kamgarpour, and J. Simarro, " Robust aircraft trajectory
planning under uncertain convective environments
with optimal control and rapidly developing thunderstorms, "
Aerosp. Sci. Technol., vol. 89, pp. 445-459, Jun.
2019, doi: 10.1016/j.ast.2019.03.051.
[151] D. Han, X. Zhang, and X. Li, " Aircrafts conflict
resolution using differential evolution, " in Proc. World
Congr. Intell. Control Autom., 2016, pp. 9-12.
[152] Q. Wang and Y. Wang, " Route planning based
on combination of artificial immune algorithm and ant
colony algorithm, " in Proc. Int. Conf. Intell. Syst. Knowl.
Eng., 2011, pp. 121-130.
[153] C. Bierwirth and F. Meisel, " A follow-up survey
of berth allocation and quay crane scheduling problems
in container terminals, " Eur. J. Oper. Res., vol. 244, no.
3, pp. 675-689, Aug. 2015, doi: 10.1016/j.ejor.2014.12.
030.
[154] J. F. Correcher, R. Alvarez-Valdes, and J. M. Tamarit,
" New exact methods for the time-invariant berth
allocation and quay crane assignment problem, " Eur. J.
Oper. Res., vol. 275, no. 1, pp. 80-92, May 2019, doi:
10.1016/j.ejor.2018.11.007.
[155] G. C. Menezes, G. R. Mateus, and M. G. Ravetti,
" A branch and price algorithm to solve the integrated
production planning and scheduling in bulk ports, " Eur.
J. Oper. Res., vol. 258, no. 3, pp. 926-937, May 2017, doi:
10.1016/j.ejor.2016.08.073.
[156] C.-J. Ting, K.-C. Wu, and H. Chou, " Particle
swarm optimization algorithm for the berth allocation
problem, " Expert Syst. Appl., vol. 41, no. 4, pp. 1543-
1550, Mar. 2014, doi: 10.1016/j.eswa.2013.08.051.
[157] C. Y. Cheong and K. C. Tan, " A multi-objective
multi-colony ant algorithm for solving the berth allocation
problem, " Studies Comput. Intell., vol. 116, pp.
333-350, 2008.
[158] C. S¸ahin and Y. Kuvvetli, " Differential evolution
based meta-heuristic algorithm for dynamic continuous
berth allocation problem, " Appl. Math. Model., vol. 40,
nos. 23-24, pp. 10,679-10,688, Dec. 2016.
[159] Z.-H. Hu, " Multi-objective genetic algorithm for
berth allocation problem considering daytime preference, "
Comput. Ind. Eng., vol. 89, pp. 2-14, Nov. 2015,
doi: 10.1016/j.cie.2015.04.035.
[160] A. Tsai, C.-N. Lee, J.-S. Wu, and F.-S. Chang,
" Novel wharf-based genetic algorithm for berth allocation
planning, " Soft Comput., vol. 21, no. 11, pp. 2897-
2910, Jun. 2017, doi: 10.1007/s00500-016-2272-1.
[161] B. Ji, X. Yuan, and Y. Yuan, " Modified NSGAII
for solving continuous berth allocation problem: Using
multiobjective constraint-handling strategy, " IEEE
Trans. Cybern., vol. 47, no. 9, pp. 2885-2895, Sep. 2017,
doi: 10.1109/TCYB.2017.2669334.
[162] R. T. Cahyono, E. J. Flonk, and B. Jayawardhana,
" Discrete-event systems modeling and the model predictive
allocation algorithm for integrated berth and
quay crane allocation, " IEEE Trans. Intell. Transp. Syst.,
vol. 21, no. 3, pp. 1321-1331, Mar. 2020, doi: 10.1109/
TITS.2019.2910283.
[163] H.-P. Hsu, " A HPSO for solving dynamic and discrete
berth allocation problem and dynamic quay crane
assignment problem simultaneously, " Swarm Evol. Comput.,
vol. 27, pp. 156-168, Apr. 2016, doi: 10.1016/j.swevo.2015.11.002.
[164]
A. De, S. Pratap, A. Kumar, and M. K. Tiwari, " A
hybrid dynamic berth allocation planning problem with
fuel costs considerations for container terminal port using
chemical reaction optimization approach, " Ann. Oper.
Res., vol. 290, vol. 783-811, Jul. 2020, doi: 10.1007/
s10479-018-3070-1.
[165] C. Liang, J. Guo, and Y. Yang, " Multi-objective hybrid
genetic algorithm for quay crane dynamic assignment in
berth allocation planning, " J. Intell. Manuf., vol. 22, vol. 471-
479, Jun. 2011, doi: 10.1007/s10845-009-0304-8.
[166] M.-W. Li, W.-C. Hong, J. Geng, and J. Wang,
" Berth and quay crane coordinated scheduling using
multi-objective chaos cloud particle swarm optimization
algorithm, " Neural Comput. Appl., vol. 28, pp. 3163-3182,
Nov. 2017, doi: 10.1007/s00521-016-2226-7.
[167] C. Liang, X. Zhang, and X. Han, " Route planning
and track keeping control for ships based on the leadervertex
ant colony and nonlinear feedback algorithms, "
Appl. Ocean Res., vol. 101, Aug. 2020, Art. no. 102239,
doi: 10.1016/j.apor.2020.102239.
[168] A. Maki et al., " A new weather-routing system that
accounts for ship stability based on a real-coded genetic
algorithm, " J. Mar. Sci. Technol., vol. 16, no. 3, pp. 311-
312, Sep. 2011, doi: 10.1007/s00773-011-0128-z.
[169] Y.-H. Lin, " The simulation of east-bound transoceanic
voyages according to ocean-current sailing based on
particle swarm optimization in the weather routing system, "
Mar. Struct., vol. 59, pp. 219-236, May 2018, doi:
10.1016/j.marstruc.2018.02.001.
[170] S. Xie, V. Garofano, X. Chu, and R. R. Negenborn,
" Model predictive ship collision avoidance based
on Q-learning beetle swarm antenna search and neural
networks, " Ocean Eng., vol. 193, Dec. 2019, Art. no.
106609, doi: 10.1016/j.oceaneng.2019.106609.
[171] R. Zlapczynski and J. Szlapczynska, " On evolutionary
computing in multi-ship trajectory planning, "
Appl. Intell., vol. 37, no. 2, pp. 155-174, Sep. 2012, doi:
10.1007/s10489-011-0319-7.
[172] A. De, J. Wang, and M. K. Tiwari, " Hybridizing
basic variable neighborhood search with particle
swarm optimization for solving sustainable ship routing
and bunker management problem, " IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 3, pp. 986-997, Mar. 2020, doi:
10.1109/TITS.2019.2900490.
MAY 2022 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 101
https://www.en.wikipedia.org/wiki/China_Airlines_Flight_611
https://www.en.wikipedia.org/wiki/China_Airlines_Flight_611
IEEE Computational Intelligence Magazine - May 2022
Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - May 2022
Contents
IEEE Computational Intelligence Magazine - May 2022 - Cover1
IEEE Computational Intelligence Magazine - May 2022 - Cover2
IEEE Computational Intelligence Magazine - May 2022 - Contents
IEEE Computational Intelligence Magazine - May 2022 - 2
IEEE Computational Intelligence Magazine - May 2022 - 3
IEEE Computational Intelligence Magazine - May 2022 - 4
IEEE Computational Intelligence Magazine - May 2022 - 5
IEEE Computational Intelligence Magazine - May 2022 - 6
IEEE Computational Intelligence Magazine - May 2022 - 7
IEEE Computational Intelligence Magazine - May 2022 - 8
IEEE Computational Intelligence Magazine - May 2022 - 9
IEEE Computational Intelligence Magazine - May 2022 - 10
IEEE Computational Intelligence Magazine - May 2022 - 11
IEEE Computational Intelligence Magazine - May 2022 - 12
IEEE Computational Intelligence Magazine - May 2022 - 13
IEEE Computational Intelligence Magazine - May 2022 - 14
IEEE Computational Intelligence Magazine - May 2022 - 15
IEEE Computational Intelligence Magazine - May 2022 - 16
IEEE Computational Intelligence Magazine - May 2022 - 17
IEEE Computational Intelligence Magazine - May 2022 - 18
IEEE Computational Intelligence Magazine - May 2022 - 19
IEEE Computational Intelligence Magazine - May 2022 - 20
IEEE Computational Intelligence Magazine - May 2022 - 21
IEEE Computational Intelligence Magazine - May 2022 - 22
IEEE Computational Intelligence Magazine - May 2022 - 23
IEEE Computational Intelligence Magazine - May 2022 - 24
IEEE Computational Intelligence Magazine - May 2022 - 25
IEEE Computational Intelligence Magazine - May 2022 - 26
IEEE Computational Intelligence Magazine - May 2022 - 27
IEEE Computational Intelligence Magazine - May 2022 - 28
IEEE Computational Intelligence Magazine - May 2022 - 29
IEEE Computational Intelligence Magazine - May 2022 - 30
IEEE Computational Intelligence Magazine - May 2022 - 31
IEEE Computational Intelligence Magazine - May 2022 - 32
IEEE Computational Intelligence Magazine - May 2022 - 33
IEEE Computational Intelligence Magazine - May 2022 - 34
IEEE Computational Intelligence Magazine - May 2022 - 35
IEEE Computational Intelligence Magazine - May 2022 - 36
IEEE Computational Intelligence Magazine - May 2022 - 37
IEEE Computational Intelligence Magazine - May 2022 - 38
IEEE Computational Intelligence Magazine - May 2022 - 39
IEEE Computational Intelligence Magazine - May 2022 - 40
IEEE Computational Intelligence Magazine - May 2022 - 41
IEEE Computational Intelligence Magazine - May 2022 - 42
IEEE Computational Intelligence Magazine - May 2022 - 43
IEEE Computational Intelligence Magazine - May 2022 - 44
IEEE Computational Intelligence Magazine - May 2022 - 45
IEEE Computational Intelligence Magazine - May 2022 - 46
IEEE Computational Intelligence Magazine - May 2022 - 47
IEEE Computational Intelligence Magazine - May 2022 - 48
IEEE Computational Intelligence Magazine - May 2022 - 49
IEEE Computational Intelligence Magazine - May 2022 - 50
IEEE Computational Intelligence Magazine - May 2022 - 51
IEEE Computational Intelligence Magazine - May 2022 - 52
IEEE Computational Intelligence Magazine - May 2022 - 53
IEEE Computational Intelligence Magazine - May 2022 - 54
IEEE Computational Intelligence Magazine - May 2022 - 55
IEEE Computational Intelligence Magazine - May 2022 - 56
IEEE Computational Intelligence Magazine - May 2022 - 57
IEEE Computational Intelligence Magazine - May 2022 - 58
IEEE Computational Intelligence Magazine - May 2022 - 59
IEEE Computational Intelligence Magazine - May 2022 - 60
IEEE Computational Intelligence Magazine - May 2022 - 61
IEEE Computational Intelligence Magazine - May 2022 - 62
IEEE Computational Intelligence Magazine - May 2022 - 63
IEEE Computational Intelligence Magazine - May 2022 - 64
IEEE Computational Intelligence Magazine - May 2022 - 65
IEEE Computational Intelligence Magazine - May 2022 - 66
IEEE Computational Intelligence Magazine - May 2022 - 67
IEEE Computational Intelligence Magazine - May 2022 - 68
IEEE Computational Intelligence Magazine - May 2022 - 69
IEEE Computational Intelligence Magazine - May 2022 - 70
IEEE Computational Intelligence Magazine - May 2022 - 71
IEEE Computational Intelligence Magazine - May 2022 - 72
IEEE Computational Intelligence Magazine - May 2022 - 73
IEEE Computational Intelligence Magazine - May 2022 - 74
IEEE Computational Intelligence Magazine - May 2022 - 75
IEEE Computational Intelligence Magazine - May 2022 - 76
IEEE Computational Intelligence Magazine - May 2022 - 77
IEEE Computational Intelligence Magazine - May 2022 - 78
IEEE Computational Intelligence Magazine - May 2022 - 79
IEEE Computational Intelligence Magazine - May 2022 - 80
IEEE Computational Intelligence Magazine - May 2022 - 81
IEEE Computational Intelligence Magazine - May 2022 - 82
IEEE Computational Intelligence Magazine - May 2022 - 83
IEEE Computational Intelligence Magazine - May 2022 - 84
IEEE Computational Intelligence Magazine - May 2022 - 85
IEEE Computational Intelligence Magazine - May 2022 - 86
IEEE Computational Intelligence Magazine - May 2022 - 87
IEEE Computational Intelligence Magazine - May 2022 - 88
IEEE Computational Intelligence Magazine - May 2022 - 89
IEEE Computational Intelligence Magazine - May 2022 - 90
IEEE Computational Intelligence Magazine - May 2022 - 91
IEEE Computational Intelligence Magazine - May 2022 - 92
IEEE Computational Intelligence Magazine - May 2022 - 93
IEEE Computational Intelligence Magazine - May 2022 - 94
IEEE Computational Intelligence Magazine - May 2022 - 95
IEEE Computational Intelligence Magazine - May 2022 - 96
IEEE Computational Intelligence Magazine - May 2022 - 97
IEEE Computational Intelligence Magazine - May 2022 - 98
IEEE Computational Intelligence Magazine - May 2022 - 99
IEEE Computational Intelligence Magazine - May 2022 - 100
IEEE Computational Intelligence Magazine - May 2022 - 101
IEEE Computational Intelligence Magazine - May 2022 - 102
IEEE Computational Intelligence Magazine - May 2022 - 103
IEEE Computational Intelligence Magazine - May 2022 - 104
IEEE Computational Intelligence Magazine - May 2022 - Cover3
IEEE Computational Intelligence Magazine - May 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com