IEEE Computational Intelligence Magazine - November 2022 - 69

classifiers for the decomposed binary
sub-problems. It balances the precision
and recall of different classes adaptively.
In this work, TPR and FPR was
adopted as two objectives. In the future,
precision and recall are planned to be
used as the optimized objectives for
designing new MOEAs for the decomposition-based
multiclass classification.
Acknowledgment
This work was supported in part by
the National Natural Science Foundation
of China under Grants 62076001,
61822301, 61672033, 61976001,
61876166, 61663046, and U1804262
and in part by the University Synergy
Innovation Program of Anhui Province
under Grant GXXT-2020-050.
References
[1] L. Nanni, S. Ghidoni, and S. Brahnam, " Handcrafted
versus non-handcrafted features for computer
vision classification, " Pattern Recognit., vol. 71,
pp. 158-172, 2017.
[2] L. Wang, Q. Qian, Q. Zhang,J. Wang, W. Cheng,
and W. Yan, " Classification model on big data in medical
diagnosis based on semi-supervised learning, " Comput.J.,
vol. 6, pp. 177-191, 2022.
[3] S. Fatima and B. Srinivasu, " Text document categorization
using support vector machine, " Int. Res. J.
Eng. Technol., vol. 4, pp. 141-147, 2017.
[4] M. Aly, " Survey on multiclass classification methods, "
Neural Netw., vol. 19, pp. 1-9, 2005.
[5] R. Rifkin and A. Klautau, " In defense ofone-vs-all
classification, " J. Mach. Learn. Res.,vol. 5, pp. 101-141,
2004.
[6] S. Ding, X. Zhang, Y. An, and Y. Xue, " Weighted
linear loss multiple birth support vector machine based
on information granulation for multi-class classification, "
Pattern Recognit., vol. 67, pp. 32-46, 2017.
[7] W. Silva and S. Villela, " Improving the oneagainst-all
binary approach for multiclass classification
using balancing techniques, " Appl. Intell., vol. 114,
pp. 1-20, 2020.
[8] J. Raitoharju, S. Kiranyaz, and M. Gabbouj, " Feature
synthesis for image classification and retrieval via oneagainst-all
perceptrons, " Neural Comput. Appl.,vol.29,
pp. 943-957, 2018.
[9] M.Galar,A.Fernandez,E.Barrenechea,H.Bustince,
and F. Herrera, " An overview of ensemble methods for
binary classifiers in multi-class problems: Experimental
study on one-vs-one and one-vs-all schemes, " Pattern Recognit.,vol.
44,pp.1761-1776, 2011.
[10] Z. Zhang, B. Krawczyk, S. Garcıa, A. RosalesP
erez, and F. Herrera, " Empowering one-vs-one
decomposition with ensemble learning for multi-class
imbalanced data, " Knowl.-Based Syst., vol. 106,
pp. 251-263, 2016.
[11] Z. Zhang, X. Luo, Y. Yu, B. Yuan, and J. Tang,
" Integration of an improved dynamic ensemble selection
approach to enhance one-vs-one scheme, " Eng.
Appl. Artif. Intell., vol. 74, pp. 43-53, 2018.
[12] S. Bernard, C. Chatelain, S. Adam, and R. Sabourin,
" The multiclass ROC front method for costsensitive
classification, " Pattern Recognit., vol. 52,
pp. 46-60, 2016.
[13] A. Saez, M. Galar, and B. Krawczyk, " Addressing
the overlapping data problem in classification using
the one-vs-one decomposition strategy, " IEEE Access,
vol. 7, pp. 83396-83411, 2019.
[14] J. Liu and B. Jia, " Combining one-vs-one
decomposition and instance-based learning for multiclass
classification, " IEEE Access, vol. 8, pp. 197499-
197507, 2020.
[15] P. Pawara, E. Okafor,M. Groefsema, S. He, L. R. B.
Schomaker, and M. A. Wiering, " One-vs-one classification
for deep neural networks, " Pattern Recognit., vol. 108,
2020, Art. no. 107528.
[16] S. Pan and Q. Yang, " A survey on transfer learning, "
IEEE Trans. Knowl. Data Eng., vol. 22, no. 10,
pp. 1345-1359, Oct. 2010.
[17] D. Wu and X. Tan,
" Multitasking genetic
algorithm(MTGA)for fuzzysystemoptimization, "
IEEE Trans. Fuzzy Syst., vol. 28, no. 6,
pp. 1050-1061, Jun. 2020.
[18] Y. Zhang and L. Wu, " Classification of fruits
using computer vision and a multiclass support vector
machine, " Sensors, vol. 12, pp. 12489-12505,
2012.
[19] B. Misselwitz et al., " Enhanced CellClassifier: A
multi-class classification tool for microscopy images, "
BMC Bioinf., vol. 11, pp. 30-34, 2010.
[20] M. Tahir, J. Kittler, and F. Yan, " Inverse random
under sampling for class imbalance problem and its
application to multi-label classification, " Pattern Recognit.,
vol. 45, pp. 3738-3750, 2012.
[21] S. Kang, S. Cho, and P. Kang, " Constructing a
multi-class classifier using one-against-one approach
with different binary classifiers, " Neurocomputing,
vol. 149, pp. 677-682, 2015.
[22] C. Chang, " LIBSVM: A library for support vector
machines, " ACM Trans. Intell. Syst. Technol.,
vol. 2, pp. 1-27, 2011.
[23] N. Majumder, S. Poria, H. Peng, N. Chhaya,
E. Cambria, and A. Gelbukh, " Sentiment and sarcasm
classification with multitask learning, " IEEE
Intell. Syst., vol. 34, no. 3, pp. 38-43, May/Jun.
2019.
[24] J. Worsham and J. Kalita, " Multi-task learning for
natural language processing in the 2020s: Where are
we going?, " Pattern Recognit. Lett., vol. 136, pp. 120-
126, 2020.
[25] S. Kim, T. Hori, and S. Watanabe, " Joint
CTC-attention based end-to-end speech recognition
using multi-task learning, " in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2017,
pp. 4835-4839.
[26] D. Luvizon, D. Picard, and H. Tabia, " 2D/3D
pose estimation and action recognition using multitask
deep learning, " in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2018, pp. 5137-5146.
[27] B. Ramsundar et al., " Is multitask deep learning
practical for pharma?, " J. Chem. Inf. Model., vol. 57,
pp. 2068-2076, 2017.
[28] A. Gupta, Y. Ong, and L. Feng, " Multifactorial
evolution: Toward evolutionary multitasking, "
IEEE Trans. Evol. Comput., vol. 20, no. 3,
pp. 343-357, Jun. 2015.
[29] Y. Ong and A. Gupta, " Evolutionary multitasking:
A computer science view of cognitive
multitasking, " Cogn. Comput.,vol.8,pp.125-142,
2016.
[30] B. Da, A. Gupta, Y. Ong, and L. Feng, " Evolutionary
multitasking across single and multiobjective
formulations forimprovedproblem solving, "
in Proc. IEEE Congr. Evol. Comput., 2016,
pp. 1695-1701.
[31] K. K. Bali, Y.-S. Ong, A. Gupta, and P. S.
Tan, " Multifactorial evolutionary algorithm with
online transfer parameter estimation: MFEA-II, "
IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 69-
83, Feb. 2020.
[32] K. Bali, A. Gupta, Y. Ong, and P. Tan, " Cognizant
multitasking in multiobjective multifactorial evolution:
MO-MFEA-II, " IEEE Trans. Cybern., vol. 51,
no. 4, pp. 1784-1796, Apr. 2021.
[33] L. Feng et al., " Explicit evolutionary multitasking
for combinatorial optimization: A case study
on capacitated vehicle routing problem, " IEEE
Trans. Cybern.,vol.51,no. 6,pp.3143-3156, Jun.
2021.
[34] Z. Tang, M. Gong, Y. Wu, W. Liu, and Y. Xie,
" Regularized evolutionary multitask optimization:
Learning to intertask transfer in aligned subspace, "
IEEE Trans. Evol. Comput., vol. 25, no. 2, pp. 262-
276, Apr. 2021.
[35] W. Du, Z. Ren, A. Chen, and H. Liu, " A
knowledge transfer-based evolutionary algorithm for
multimodal optimization, " in Proc. IEEE Congr. Evol.
Comput., 2021, pp. 1953-1960.
[36] X. Hao, R. Qu, and J. Liu, " A unified framework
of graph-based evolutionary multitasking
hyper-heuristic, " IEEE Trans. Evol. Comput., vol. 25,
no. 1, pp. 35-47, Feb. 2021.
[37] K. Chen, B. Xue, M. Zhang, and F. Zhou, " An
evolutionary multitasking-based feature selection
method for high-dimensional classification, " IEEE
Trans. Cybern., vol. 52, no. 7, pp. 7172-7186, Jul.
2022, doi: 10.1109/TCYB.2020.3042243.
[38] K. Chen, B. Xue, M. Zhang, and F. Zhou,
" Evolutionary multitasking for feature selection in
high-dimensional classification via particle swarm
optimization, " IEEE Trans. Evol. Comput., vol. 26,
no. 3, pp. 446-460, Jun. 2022, doi: 10.1109/
TEVC.2021.3100056.
[39] F. Zhang, Y. Mei, S. Nguyen, K. C. Tan, and M.
Zhang, " Multitask genetic programming-based generative
hyperheuristics: A case study in dynamic scheduling, "
IEEE Trans. Cybern., early access, Mar. 22, 2021,
doi: 10.1109/TCYB.2021.3065340.
[40] K. Wu, C. Wang, and J. Liu, " Evolutionary multitasking
multilayer network reconstruction, " IEEE
Trans. Cybern., early access, Jul. 16, 2021,
doi: 10.1109/TCYB.2021.3090769.
[41] Q. Xu, N. Wang, L. Wang, W. Li, and
Q. Sun, " Multi-task optimization and multi-task evolutionary
computation in the past five years: A brief
review, " Mathematics, vol. 9, no. 8, 2021, Art. no. 864.
[42] A. Rosales-Perez, S. Garcia, H. Terashima-Marin,
C. A. C. Coello, and F. Herrera, " MC2ESVM: Multiclass
classification based on cooperative evolution ofsupport
vector machines, " IEEE Comput. Intell. Mag.,
vol. 13, no. 2, pp. 18-29, May 2018.
[43] Z. Yang, T. Zhang, J. Lu, D. Zhang, and D.
Kalui, " Optimizing area under the ROC curve via
extreme learning machines, " Knowl.-Based Syst.,
vol. 130, pp. 74-89, 2017.
[44] D. Smith et al., " Behavior classification of cows
fitted with motion collars: Decomposing multi-class
classification into a set of binary problems, " Comput.
Electron. Agriculture, vol. 131, pp. 40-50, 2016.
[45] D. Pethalakshmi, " Twitter sentiment analysis
using Dempster Shafer algorithm based feature
selection and one against all multiclass SVM classifier, "
Int. J. Adv. Res. Eng. Technol.,vol.11,
pp. 163-185, 2020.
[46] Q. Li, Y. Song, J. Zhang, and V. Sheng, " Multiclass
imbalanced learning with one-versus-one
decomposition and spectral clustering, " Expert Syst.
Appl., vol. 147, pp. 113152-113162, 2020.
[47] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan,
" A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimization: NSGAII, "
in Proc. Int. Conf. Parallel Problem Solving Nature,
2000, pp. 849-858.
[48] F. Cheng, Q. Zhang, Y. Tian, and X. Zhang,
" Maximizing receiver operating characteristics convex
hull via dynamic reference point-based multi-objective
evolutionary algorithm, " Appl. Soft Comput.,
vol. 86, pp. 105896-105906, 2020.
[49] W. Pei, B. Xue, L. Shang, and M. Zhang,
" Developing interval-based cost-sensitive classifiers by
genetic programming for binary high-dimensional
unbalanced classification [Research Frontier], " IEEE
Comput. Intell. Mag., vol. 16, no. 1, pp. 84-98, Feb.
2021.
[50] X. Zheng, A. K. Qin, M. Gong, and D. Zhou,
" Self-regulated evolutionary multitask optimization, "
IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 16-28,
Feb. 2020.
NOVEMBER 2022 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 69
http://dx.doi.org/10.1109/TCYB.2020.3042243 http://dx.doi.org/10.1109/TEVC.2021.3100056 http://dx.doi.org/10.1109/TEVC.2021.3100056 http://dx.doi.org/10.1109/TCYB.2021.3065340 http://dx.doi.org/10.1109/TCYB.2021.3090769

IEEE Computational Intelligence Magazine - November 2022

Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - November 2022

Contents
IEEE Computational Intelligence Magazine - November 2022 - Cover1
IEEE Computational Intelligence Magazine - November 2022 - Cover2
IEEE Computational Intelligence Magazine - November 2022 - Contents
IEEE Computational Intelligence Magazine - November 2022 - 2
IEEE Computational Intelligence Magazine - November 2022 - 3
IEEE Computational Intelligence Magazine - November 2022 - 4
IEEE Computational Intelligence Magazine - November 2022 - 5
IEEE Computational Intelligence Magazine - November 2022 - 6
IEEE Computational Intelligence Magazine - November 2022 - 7
IEEE Computational Intelligence Magazine - November 2022 - 8
IEEE Computational Intelligence Magazine - November 2022 - 9
IEEE Computational Intelligence Magazine - November 2022 - 10
IEEE Computational Intelligence Magazine - November 2022 - 11
IEEE Computational Intelligence Magazine - November 2022 - 12
IEEE Computational Intelligence Magazine - November 2022 - 13
IEEE Computational Intelligence Magazine - November 2022 - 14
IEEE Computational Intelligence Magazine - November 2022 - 15
IEEE Computational Intelligence Magazine - November 2022 - 16
IEEE Computational Intelligence Magazine - November 2022 - 17
IEEE Computational Intelligence Magazine - November 2022 - 18
IEEE Computational Intelligence Magazine - November 2022 - 19
IEEE Computational Intelligence Magazine - November 2022 - 20
IEEE Computational Intelligence Magazine - November 2022 - 21
IEEE Computational Intelligence Magazine - November 2022 - 22
IEEE Computational Intelligence Magazine - November 2022 - 23
IEEE Computational Intelligence Magazine - November 2022 - 24
IEEE Computational Intelligence Magazine - November 2022 - 25
IEEE Computational Intelligence Magazine - November 2022 - 26
IEEE Computational Intelligence Magazine - November 2022 - 27
IEEE Computational Intelligence Magazine - November 2022 - 28
IEEE Computational Intelligence Magazine - November 2022 - 29
IEEE Computational Intelligence Magazine - November 2022 - 30
IEEE Computational Intelligence Magazine - November 2022 - 31
IEEE Computational Intelligence Magazine - November 2022 - 32
IEEE Computational Intelligence Magazine - November 2022 - 33
IEEE Computational Intelligence Magazine - November 2022 - 34
IEEE Computational Intelligence Magazine - November 2022 - 35
IEEE Computational Intelligence Magazine - November 2022 - 36
IEEE Computational Intelligence Magazine - November 2022 - 37
IEEE Computational Intelligence Magazine - November 2022 - 38
IEEE Computational Intelligence Magazine - November 2022 - 39
IEEE Computational Intelligence Magazine - November 2022 - 40
IEEE Computational Intelligence Magazine - November 2022 - 41
IEEE Computational Intelligence Magazine - November 2022 - 42
IEEE Computational Intelligence Magazine - November 2022 - 43
IEEE Computational Intelligence Magazine - November 2022 - 44
IEEE Computational Intelligence Magazine - November 2022 - 45
IEEE Computational Intelligence Magazine - November 2022 - 46
IEEE Computational Intelligence Magazine - November 2022 - 47
IEEE Computational Intelligence Magazine - November 2022 - 48
IEEE Computational Intelligence Magazine - November 2022 - 49
IEEE Computational Intelligence Magazine - November 2022 - 50
IEEE Computational Intelligence Magazine - November 2022 - 51
IEEE Computational Intelligence Magazine - November 2022 - 52
IEEE Computational Intelligence Magazine - November 2022 - 53
IEEE Computational Intelligence Magazine - November 2022 - 54
IEEE Computational Intelligence Magazine - November 2022 - 55
IEEE Computational Intelligence Magazine - November 2022 - 56
IEEE Computational Intelligence Magazine - November 2022 - 57
IEEE Computational Intelligence Magazine - November 2022 - 58
IEEE Computational Intelligence Magazine - November 2022 - 59
IEEE Computational Intelligence Magazine - November 2022 - 60
IEEE Computational Intelligence Magazine - November 2022 - 61
IEEE Computational Intelligence Magazine - November 2022 - 62
IEEE Computational Intelligence Magazine - November 2022 - 63
IEEE Computational Intelligence Magazine - November 2022 - 64
IEEE Computational Intelligence Magazine - November 2022 - 65
IEEE Computational Intelligence Magazine - November 2022 - 66
IEEE Computational Intelligence Magazine - November 2022 - 67
IEEE Computational Intelligence Magazine - November 2022 - 68
IEEE Computational Intelligence Magazine - November 2022 - 69
IEEE Computational Intelligence Magazine - November 2022 - 70
IEEE Computational Intelligence Magazine - November 2022 - 71
IEEE Computational Intelligence Magazine - November 2022 - 72
IEEE Computational Intelligence Magazine - November 2022 - Cover3
IEEE Computational Intelligence Magazine - November 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com