IEEE Computational Intelligence Magazine - February 2023 - 67
[10] W. Chen, Y. Wang, and S. Yang, " Efficient influence maximization in social
networks, " in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2009, pp. 199-208.
[11] K. Rahimkhani, A. Aleahmad, M. Rahgozar, and A. Moeini, " A fast algorithm
for finding most influential people based on the linear threshold model, " Expert Syst.
Appl., vol. 42, no. 3, pp. 1353-1361, 2015.
[12] A. Zareie, A. Sheikhahmadi, and M. Jalili, " Identification of influential users in
social network using gray wolfoptimization algorithm, " Expert Syst. Appl., vol. 142,
2020, Art. no. 112971.
[13] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance,
" Cost-effective outbreak detection in networks, " in Proc. 13th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2007, pp. 420-429.
[14] A. Goyal, W. Lu, and L. V. Lakshmanan, " Celfþþ: Optimizing the greedy
algorithm for influence maximization in social networks, " in Proc. 20th Int. Conf.
Companion World Wide Web, 2011, pp. 47-48.
[15] L. Page, S. Brin, R. Motwani, and T. Winograd, " The pagerank citation ranking:
Bringing order to the web, " Stanford Info. Lab., Stanford, CA, USA, Tech.
Rep. 1999-66, 1999.
[16] Y. Li, D. Zhang, and K. Tan, " Real-time targeted influence maximization
for online advertisements, " Proc. VLDB Endowment,vol. 8,no.10,pp.1070-1081,
2015.
[17] X. Wang, X. Zhang, C. Zhao, and D. Yi, " Maximizing the spread of influence
via generalized degree discount, " PLoS One, vol. 11, no. 10, pp. 1-16, 2016.
[18] Q.Jiang, G. Song, G. Cong, Y. Wang, W. Si, and K. Xie, " Simulated annealing
based influence maximization in social networks, " in Proc. 25th AAAI Conf. Artif.
Intell., 2011, pp. 127-132.
[19] J. - R. Lee and C. - W. Chung, " A fast approximation for influence maximization
in large social networks, " in Proc. 23th Int. Conf. Companion World Wide Web,
2014, pp. 1157-1162.
[20] M. Gong, C. Song, C. Duan, L. Ma, and B. Shen, " An efficient memetic algorithm
for influence maximization in social networks, " IEEE Comput. Intell. Mag.,
vol. 11, no. 3, pp. 22-33, Aug. 2016.
[21] M.Gong,J.Yan,B.Shen,L.Ma,and Q. Cai, " Influence maximization in social networks
based on discrete particle swarm optimization, " Inf. Sci.,vol.367, pp. 600-614,
2016.
[22] L. Wang, L. Ma, C. Wang, N. -G. Xie, J. M. Koh, and K. H. Cheong, " Identifying
influential spreaders in social networks through discrete moth-flame optimization, "
IEEE Trans. Evol. Comput., vol. 25, no. 6, pp. 1091-1102, Dec. 2021.
[23] S. S. Singh, A. Kumar, K. Singh, and B. Biswas, " LAPSO-IM: A learning-based
influence maximization approach for social networks, " Appl. Soft Comput., vol. 82,
Sep. 2019, Art. no. 105554.
[24] S. S. Singh, K. Singh, A. Kumar, and B. Biswas, " ACO-IM: Maximizing influence
in social networks using ant colony optimization, " Soft Comput., vol. 24,
pp. 10181-10203, Nov. 2020.
[25] H. Li, R. Zhang, Z. Zhao, X. Liu, and Y. Yuan, " Identification oftop-k influential
nodes based on discrete crow search algorithm optimization for influence maximization, "
Appl. Intell., vol. 51, pp. 7749-7765, Mar. 2021.
[26] L. Ma et al., " Influence maximization in complex networks by using evolutionary
deep reinforcement learning, " IEEE Trans. Emerg. Topics Comput. Intell., early
access, Jan. 13, 2022, doi: 10.1109/TETCI.2021.3136643.
[27] H. Li, M. Xu, S. S. Bhowmick, J. S. Rayhan, C. Sun, and J. Cui, " PIANO:
Influence maximization meets deep reinforcement learning, " IEEE Trans. Comput.
Social Syst., early access, May 05, 2022, doi: 10.1109/TCSS.2022.3164667.
[28] K. Ali, C. -Y. Wang, M. -Y. Yeh, C. -T. Li, and Y. -S. Chen, " NEDRL-CIM:
Network embedding meets deep reinforcement learning to tackle competitive influence
maximization on evolving social networks, " in Proc. IEEE 8th Int. Conf. Data
Sci. Adv. Analytics, 2021, pp. 1-9.
[29] D. Bucur, G. Iacca, A. Marcelli, G. Squillero, and A. Tonda, " Evaluating surrogate
models for multi-objective influence maximization in social networks, " in Proc.
Genet. Evol. Comput. Conf. Companion, 2018, pp. 1258-1265.
[30] B. S. Da et al., " Evolutionary multitasking for single-objective continuous optimization:
Benchmark problems, performance metric, and baseline results, " 2017,
arXiv:1706.03470.
[31] K. Wu, C. Wang, and J. Liu, " Evolutionary multitasking multilayer network
reconstruction, " IEEE Trans. Cybern., vol. 52, no. 12, pp. 12854-12868, Dec. 2022.
[32] A. Gupta and Y. S. Ong, " Back to the roots: Multi-X evolutionary computation, "
Cogn. Comput., vol. 11, no. 1, pp. 1-17, Jan. 2019.
[33] A. Gupta, Y. S. Ong, and L. Feng, " Multifactorial evolution: Toward evolutionary
multitasking, " IEEETrans. Evol. Comput., vol. 20, no. 3, pp. 343-357,Jun. 2016.
[34] L. Feng et al., " Evolutionary multitasking via explicit autoencoding, " IEEE
Trans. Cybern., vol. 49, no. 9, pp. 3457-3470, Sep. 2019.
[35] R. T. Liaw and C. K. Ting, " Evolutionary manytasking optimization based on
symbiosis in biocoenosis, " in Proc. 33rd AAAIConf. Artif. Intell., 2019, pp. 4295-4303.
[36] K. K. Bali, Y. S. Ong, A. Gupta, and P. S. Tan, " Multifactorial evolutionary
algorithm with online transfer parameter estimation: MFEA-II, " IEEE Trans. Evol.
Comput., vol. 24, no. 1, pp. 69-83, Feb. 2020.
[37] A. Gupta, Y. Ong, and L. Feng, " Insights on transfer optimization: Because
experience is the best teacher, " IEEE Trans. Emerg. Topics Comput. Intell.,vol.2,
no. 1, pp. 51-64, Feb. 2018.
[38] Y. Feng, L. Feng, Y. Hou, and K. C. Tan, " Large-scale optimization via evolutionary
multitasking assisted random embedding, " in Proc. 2020 IEEE Congr. Evol.
Comput., 2020, pp. 1-8.
[39] Y. Feng, L. Feng, S. Kwong, and K. C. Tan, " A multivariation multifactorial
evolutionary algorithm for large-scale multiobjective optimization, " IEEE Trans.
Evol. Comput., vol. 26, no. 2, pp. 248-262, Apr. 2022.
[40] J. Ding, C. Yang, Y. Jin, and T. Chai, " Generalized multitasking for evolutionary
optimization ofexpensive problems, " IEEE Trans. Evol. Comput., vol. 23, no. 1,
pp. 44-58, Feb. 2019.
[41] K. Chen, B. Xue, M. Zhang, and F. Zhou, " Evolutionary multitasking for feature
selection in high-dimensional classification via particle swarm optimization, "
IEEE Trans. Evol. Comput., vol. 26, no. 3, pp. 446-460, Jun. 2022.
[42] K. Wu, J. Liu, C. Wang, and K. Yuan, " Pareto optimization for influence maximization
in social networks, " in Proc. 11th Int. Conf. Evol. Multi-Criterion Optim.,
2021, pp. 697-707.
[43] Y. Li, J. Fan, Y. Wang, and K. Tan, " Influence maximization on social graphs:
A survey, " IEEE Trans. Knowl. Data Eng., vol. 30, no. 10, pp. 1852-1872, Oct.
2018.
[44] S. Banerjee, M. Jenamani, and D. K. Pratihar, " A survey on influence maximization
in a social network, " Knowl. Inf. Syst., vol. 62, pp. 3417-3455, Mar. 2020.
[45] S. Wang, J. Liu, and Y. Jin, " Finding influential nodes in multiplex networks
using a memetic algorithm, " IEEE Trans. Cybern., vol. 51, no. 2, pp. 900-912,
Feb. 2021.
[46] Q. Wang, M. Gong, C. Song, and S. Wang, " Discrete particle swarm optimization
based influence maximization in complex networks, " in Proc. IEEE Congr. Evol.
Comput., 2017, pp. 488-494.
[47] L. Han, K. C. Li, A. Castiglione, J. Tang, H. Huang, and Q. Zhou, " A cliquebased
discrete bat algorithm for influence maximization in identifying top-k influential
nodes ofsocial networks, " Soft Comput., vol. 25, pp. 8223-8240, Apr. 2021.
[48] J. Tang, R. Zhang, P. Wang, Z. Zhao, L. Fan, and X. Liu, " A discrete shuffled
frog-leaping algorithm to identify influential nodes for influence maximization in
social networks, " Knowl.-Based Syst., vol. 187, Jan. 2020, Art. no. 104833.
[49] C. Wang, J. Liu, K. Wu, and Z. Wu, " Solving multitask optimization problems
with adaptive knowledge transfer via anomaly detection, " IEEE Trans. Evol. Comput.,
vol. 26, no. 2, pp. 304-318, Apr. 2022.
[50] C. Wang, J. Liu, K. Wu, and C. Ying, " Learning large-scale fuzzy cognitive
maps using an evolutionary many-task algorithm, " Appl. Soft Comput., vol. 108, Sep.
2021, Art. no. 107441.
[51] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT
Press, 1998, pp. 128-129.
[52] Y. Jin, H. Wang, and C. Sun, Data-Driven Evolutionary Optimization. Berlin,
Germany: Springer, 2021, pp. 57-59.
[53] Q. Zhang and H. Muhlenbein, " On the convergence ofa class ofestimation ofdistribution
algorithms, " IEEE Trans. Evol. Comput.,vol.8,no. 2,pp.127-136, Apr.
2004.
[54] R. Rossi and N. Ahmed, " The network data repository with interactive graph analytics
and visualization, " in Proc. 29th AAAIConf. Artif. Intell., 2015, pp. 4292-4293.
[55] R. A. Rossi and N. K. Ahmed, " Networkrepository: A graph data repository with
visual interactive analytics, " in Proc. 29th AAAIConf. Artif. Intell., 2015, pp. 25-30.
[56] R. Rossi and N. Ahmed, " Network repository: A scientific network data repository
with interactive visualization and mining tools, " 2012. [Online]. Available:
http://networkrepository.com/
[57] J. Leskovec and A. Krevl, " SNAP datasets: Stanford large network dataset collection, "
Jun. 2014. [Online]. Available: http://snap.stanford.edu/data
[58] H. Li, Y. S. Ong, M. Gong, and Z. Wang, " Evolutionary multitasking sparse
reconstruction: Framework and case study, " IEEE Trans. Evol. Comput., vol. 23,
no. 5, pp. 733-747, Oct. 2019.
[59] L. Feng et al., " Explicit evolutionary multitasking for combinatorial optimization:
A case study on capacitated vehicle routing problem, " IEEE Trans. Cybern.,
vol. 51, no. 6, pp. 3143-3156, Jun. 2021.
[60] X. Hao, R. Qu, and J. Liu, " Aunified framework of graph-based evolutionary
multitasking hyper-heuristic, " IEEE Trans. Evol. Comput., vol. 25, no. 1, pp. 35-47,
Feb. 2021.
[61] F. Shen, J. Liu, and K. Wu, " Evolutionary multitasking fuzzy cognitive map
learning, " Knowl.-Based Syst., vol. 192, Mar. 2020, Art. no. 105294.
[62] L. C. Freeman, " Centrality in social networks conceptual clarification, " Social
Netw., vol. 1, no. 3, pp. 215-239, 1978.
[63] S. Brin and L. Page, " The anatomy of a large-scale hypertextual web search
engine, " Comput. Netw. ISDNSyst., vol. 30, no. 1, pp. 107-117, 1998.
[64] H. B. Mann and D. R. Whitney, " On a test ofwhether one oftwo random variables
is stochastically larger than the other, " Ann. Math. Statist., vol. 18, no. 1,
pp. 50-60, Mar. 1947.
[65] L. Sun, W. Huang, P. S. Yu, and W. Chen, " Multi-round influence maximization, "
in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018,
pp. 2249-2258.
[66] S. -C. Lin, S. -D. Lin, and M. -S. Chen, " A learning-based framework to
handle multi-round multi-party influence maximization on social networks, " in
Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2015,
pp. 695-704.
FEBRUARY 2023 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 67
http://dx.doi.org/10.1109/TETCI.2021.3136643
http://networkrepository.com/
http://dx.doi.org/10.1109/TCSS.2022.3164667
http://snap.stanford.edu/data
IEEE Computational Intelligence Magazine - February 2023
Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - February 2023
Contents
IEEE Computational Intelligence Magazine - February 2023 - Cover1
IEEE Computational Intelligence Magazine - February 2023 - Cover2
IEEE Computational Intelligence Magazine - February 2023 - Contents
IEEE Computational Intelligence Magazine - February 2023 - 2
IEEE Computational Intelligence Magazine - February 2023 - 3
IEEE Computational Intelligence Magazine - February 2023 - 4
IEEE Computational Intelligence Magazine - February 2023 - 5
IEEE Computational Intelligence Magazine - February 2023 - 6
IEEE Computational Intelligence Magazine - February 2023 - 7
IEEE Computational Intelligence Magazine - February 2023 - 8
IEEE Computational Intelligence Magazine - February 2023 - 9
IEEE Computational Intelligence Magazine - February 2023 - 10
IEEE Computational Intelligence Magazine - February 2023 - 11
IEEE Computational Intelligence Magazine - February 2023 - 12
IEEE Computational Intelligence Magazine - February 2023 - 13
IEEE Computational Intelligence Magazine - February 2023 - 14
IEEE Computational Intelligence Magazine - February 2023 - 15
IEEE Computational Intelligence Magazine - February 2023 - 16
IEEE Computational Intelligence Magazine - February 2023 - 17
IEEE Computational Intelligence Magazine - February 2023 - 18
IEEE Computational Intelligence Magazine - February 2023 - 19
IEEE Computational Intelligence Magazine - February 2023 - 20
IEEE Computational Intelligence Magazine - February 2023 - 21
IEEE Computational Intelligence Magazine - February 2023 - 22
IEEE Computational Intelligence Magazine - February 2023 - 23
IEEE Computational Intelligence Magazine - February 2023 - 24
IEEE Computational Intelligence Magazine - February 2023 - 25
IEEE Computational Intelligence Magazine - February 2023 - 26
IEEE Computational Intelligence Magazine - February 2023 - 27
IEEE Computational Intelligence Magazine - February 2023 - 28
IEEE Computational Intelligence Magazine - February 2023 - 29
IEEE Computational Intelligence Magazine - February 2023 - 30
IEEE Computational Intelligence Magazine - February 2023 - 31
IEEE Computational Intelligence Magazine - February 2023 - 32
IEEE Computational Intelligence Magazine - February 2023 - 33
IEEE Computational Intelligence Magazine - February 2023 - 34
IEEE Computational Intelligence Magazine - February 2023 - 35
IEEE Computational Intelligence Magazine - February 2023 - 36
IEEE Computational Intelligence Magazine - February 2023 - 37
IEEE Computational Intelligence Magazine - February 2023 - 38
IEEE Computational Intelligence Magazine - February 2023 - 39
IEEE Computational Intelligence Magazine - February 2023 - 40
IEEE Computational Intelligence Magazine - February 2023 - 41
IEEE Computational Intelligence Magazine - February 2023 - 42
IEEE Computational Intelligence Magazine - February 2023 - 43
IEEE Computational Intelligence Magazine - February 2023 - 44
IEEE Computational Intelligence Magazine - February 2023 - 45
IEEE Computational Intelligence Magazine - February 2023 - 46
IEEE Computational Intelligence Magazine - February 2023 - 47
IEEE Computational Intelligence Magazine - February 2023 - 48
IEEE Computational Intelligence Magazine - February 2023 - 49
IEEE Computational Intelligence Magazine - February 2023 - 50
IEEE Computational Intelligence Magazine - February 2023 - 51
IEEE Computational Intelligence Magazine - February 2023 - 52
IEEE Computational Intelligence Magazine - February 2023 - 53
IEEE Computational Intelligence Magazine - February 2023 - 54
IEEE Computational Intelligence Magazine - February 2023 - 55
IEEE Computational Intelligence Magazine - February 2023 - 56
IEEE Computational Intelligence Magazine - February 2023 - 57
IEEE Computational Intelligence Magazine - February 2023 - 58
IEEE Computational Intelligence Magazine - February 2023 - 59
IEEE Computational Intelligence Magazine - February 2023 - 60
IEEE Computational Intelligence Magazine - February 2023 - 61
IEEE Computational Intelligence Magazine - February 2023 - 62
IEEE Computational Intelligence Magazine - February 2023 - 63
IEEE Computational Intelligence Magazine - February 2023 - 64
IEEE Computational Intelligence Magazine - February 2023 - 65
IEEE Computational Intelligence Magazine - February 2023 - 66
IEEE Computational Intelligence Magazine - February 2023 - 67
IEEE Computational Intelligence Magazine - February 2023 - 68
IEEE Computational Intelligence Magazine - February 2023 - 69
IEEE Computational Intelligence Magazine - February 2023 - 70
IEEE Computational Intelligence Magazine - February 2023 - 71
IEEE Computational Intelligence Magazine - February 2023 - 72
IEEE Computational Intelligence Magazine - February 2023 - 73
IEEE Computational Intelligence Magazine - February 2023 - 74
IEEE Computational Intelligence Magazine - February 2023 - 75
IEEE Computational Intelligence Magazine - February 2023 - 76
IEEE Computational Intelligence Magazine - February 2023 - 77
IEEE Computational Intelligence Magazine - February 2023 - 78
IEEE Computational Intelligence Magazine - February 2023 - 79
IEEE Computational Intelligence Magazine - February 2023 - 80
IEEE Computational Intelligence Magazine - February 2023 - 81
IEEE Computational Intelligence Magazine - February 2023 - 82
IEEE Computational Intelligence Magazine - February 2023 - 83
IEEE Computational Intelligence Magazine - February 2023 - 84
IEEE Computational Intelligence Magazine - February 2023 - 85
IEEE Computational Intelligence Magazine - February 2023 - 86
IEEE Computational Intelligence Magazine - February 2023 - 87
IEEE Computational Intelligence Magazine - February 2023 - 88
IEEE Computational Intelligence Magazine - February 2023 - 89
IEEE Computational Intelligence Magazine - February 2023 - 90
IEEE Computational Intelligence Magazine - February 2023 - 91
IEEE Computational Intelligence Magazine - February 2023 - 92
IEEE Computational Intelligence Magazine - February 2023 - 93
IEEE Computational Intelligence Magazine - February 2023 - 94
IEEE Computational Intelligence Magazine - February 2023 - 95
IEEE Computational Intelligence Magazine - February 2023 - 96
IEEE Computational Intelligence Magazine - February 2023 - 97
IEEE Computational Intelligence Magazine - February 2023 - 98
IEEE Computational Intelligence Magazine - February 2023 - 99
IEEE Computational Intelligence Magazine - February 2023 - 100
IEEE Computational Intelligence Magazine - February 2023 - 101
IEEE Computational Intelligence Magazine - February 2023 - 102
IEEE Computational Intelligence Magazine - February 2023 - 103
IEEE Computational Intelligence Magazine - February 2023 - 104
IEEE Computational Intelligence Magazine - February 2023 - Cover3
IEEE Computational Intelligence Magazine - February 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com