IEEE Computational Intelligence Magazine - February 2023 - 80

References
[1] J. Du, W. Li, B. Xiao, and Q. Nawaz, " Union Laplacian pyramid with multiple
features for medical image fusion, " Neurocomputing, vol. 194, pp. 326-339, 2016.
[2] A. P. James and B. V. Dasarathy, " Medical image fusion: A survey of the state of
the art, " Inf. Fusion, vol. 19, pp. 4-19, 2014.
[3] L. Tao and Z. - Y. Qian, " An improved medical image fusion algorithm based on
wavelet transform, " in Proc. 7th Int. Conf. Natural Comput., 2011, pp. 76-78.
[4]A.Sotiras,C.Davatzikos, andN.Paragios, " Deformable medical image registration:
A survey, " IEEE Trans. Med. Imag., vol. 32, no. 7, pp. 1153-1190,
Jul. 2013.
[5] P. Julin, J. Lindqvist, L. Svensson, P. Slomka, and L. O. Wahlund, " MRI-guided
SPECT measurements of medial temporal lobe blood flow in Alzheimer's disease, "
J. Nucl. Med., vol. 38, no. 6, pp. 914-919, 1997.
[6] V. Barra and J. - Y. Boire, " A general framework for the fusion ofanatomical and
functional medical images, " NeuroImage, vol. 13, no. 3, pp. 410-424, 2001.
[7] J. Du, W. Li, K. Lu, and B. Xiao, " An overview of multi-modal medical image
fusion, " Neurocomputing, vol. 215, pp. 3-20, 2016.
[8] Z. Liu, H. Yin, Y. Chai, and S. X. Yang, " A novel approach for multimodal
medical image fusion, " Expert Syst. Appl., vol. 41, no. 16, pp. 7425-7435, 2014.
[9] H. Hermessi, O. Mourali, and E. Zagrouba, " Multimodal medical image fusion
review: Theoretical background and recent advances, " Signal Process., vol. 183, 2021,
Art. no. 108036.
[10] M. Wang and X. Shang, " A fast image fusion with discrete cosine transform, "
IEEE Signal Process. Lett., vol. 27, pp. 990-994, 2020.
[11] K. Rajarshi and C. Himabindu, " DWT based medical image fusion with maximum
local extrema, " in Proc. Int. Conf. Comput. Commun. Inform., 2016, pp. 1-5.
[12] M. B. Abdulkareem, " Design and development of multimodal medical image
fusion using discrete wavelet transform, " in Proc. 2nd Int. Conf. Inventive Commun.
Comput. Technol., 2018, pp. 1629-1633.
[13] J. J. Lewis, R. J. O'Callaghan, S. G. Nikolov, D. R. Bull, and N. Canagarajah,
" Pixel-and region-based image fusion with complex wavelets, " Inf. Fusion,vol.8,
no. 2, pp. 119-130, 2007.
[14] X. Li, X. Guo, P. Han, X. Wang, H. Li, and T. Luo, " Laplacian redecomposition
for multimodal medical image fusion, " IEEE Trans. Instrum. Meas., vol. 69,
no. 9, pp. 6880-6890, Sep. 2020.
[15] M. Yin, X. Liu, Y. Liu, and X. Chen, " Medical image fusion with parameteradaptive
pulse coupled neural network in nonsubsampled shearlet transform
domain, " IEEE Trans. Instrum. Meas., vol. 68, no. 1, pp. 49-64, Jan. 2018.
[16] G. Easley, D. Labate, and W. - Q. Lim, " Sparse directional image representations
using the discrete shearlet transform, " Appl. Comput. Harmon. Anal., vol. 25,
no. 1, pp. 25-46, 2008.
[17] Z. Zhu, M. Zheng, G. Qi, D. Wang, and Y. Xiang, " A phase congruency and
local Laplacian energy based multi-modality medical image fusion method in NSCT
domain, " IEEE Access, vol. 7, pp. 20811-20824, 2019.
[18] W. Tan, P. Tiwari, H. M. Pandey, C. Moreira, and A. K. Jaiswal, " Multimodal
medical image fusion algorithm in the era of big data, " Neural Comput. Appl.,vol. 8,
pp. 1-21, 2020.
[19] B. Yang and S. Li, " Multifocus image fusion and restoration with sparse representation, "
IEEE Trans. Instrum. Meas., vol. 59, no. 4, pp. 884-892, Apr. 2009.
[20] Q. Zhang and M. D. Levine, " Robust multi-focus image fusion using multitask
sparse representation and spatial context, " IEEE Trans. Image Process., vol. 25,
no. 5, pp. 2045-2058, May 2016.
[21] Y. Liu and Z. Wang, " Simultaneous image fusion and denoising with adaptive
sparse representation, " IETImage Process., vol. 9, no. 5, pp. 347-357, 2015.
[22] Y. Liu, X. Chen, R. K. Ward, and Z. J. Wang, " Medical image fusion via convolutional
sparsity based morphological component analysis, " IEEE Signal Process.
Lett., vol. 26, no. 3, pp. 485-489, Mar. 2019.
[23] K. Wang, M. Zheng, H. Wei, G. Qi, and Y. Li, " Multi-modality medical image
fusion using convolutional neural network and contrast pyramid, " Sensors, vol. 20,
no. 8, 2020, Art. no. 2169.
[24] P. Maneesha, T. Singh, R. Nayar, and S. Kumar, " Multi modal medical image
fusion using convolution neural network, " in Proc. 3rd Int. Conf. Inventive Syst. Control,
2019, pp. 351-357.
[25] F. Lahoud and S. S€usstrunk, " Zero-learning fast medical image fusion, " in Proc.
22th Int. Conf. Inf. Fusion, 2019, pp. 1-8.
[26] Y. Liu, X. Chen, J. Cheng, and H. Peng, " A medical image fusion method based
on convolutional neural networks, " in Proc. 20th Int. Conf. Inf. Fusion,2017,pp. 1-7.
[27] H. Xu, J. Ma, Z. Le, J. Jiang, and X. Guo, " Fusiondn: A unified densely connected
network for image fusion, " Proc. AAAI Conf. Artif. Intell., vol. 34, no. 07,
pp. 12484-12491, 2020.
[28] Z. Xiao, X. Xu, H. Xing, S. Luo, P. Dai, and D. Zhan, " RTFN: A robust temporal
feature network for time series classification, " Inf. Sci., vol. 571, pp. 65-86,
2021.
[29] H. Xing, Z. Xiao, D. Zhan, S. Luo, P. Dai, and K. Li, " SelfMatch: Robust
semisupervised time-series classification with self-distillation, " Int. J. Intell. Syst.,
vol. 37, no. 11, pp. 8583-8610, 2022.
[30] H. Xu and J. Ma, " EMFusion: An unsupervised enhanced medical image fusion
network, " Inf. Fusion, vol. 76, pp. 177-186, 2021.
[31] J. Ma, H. Xu, J. Jiang, X. Mei, and X. - P. Zhang, " DDcGAN: A dual-discriminator
conditional generative adversarial network for multi-resolution image fusion, "
IEEE Trans. Image Process., vol. 29, pp. 4980-4995, 2020.
[32] X. Liang, P. Hu, L. Zhang, J. Sun, and G. Yin, " MCFNet: Multi-layer concatenation
fusion network for medical images fusion, " IEEE Sensors J., vol. 19, no. 16,
pp. 7107-7119, Aug. 2019.
[33] Y. Zhang, Y. Liu, P. Sun, H. Yan, X. Zhao, and L. Zhang, " IFCNN: A general
image fusion framework based on convolutional neural network, " Inf. Fusion,
vol. 54, pp. 99-118, 2020.
[34] H. Xu, J. Ma, J. Jiang, X. Guo, and H. Ling, " U2Fusion: A unified unsupervised
image fusion network, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 1,
pp. 502-518, Jan. 2020.
[35] R. Nie, J. Cao, D. Zhou, and W. Qian, " Multi-source information exchange
encoding with PCNN for medical image fusion, " IEEE Trans. Circuits Syst. Video
Technol., vol. 31, no. 3, pp. 986-1000, Mar. 2021.
[36] H. Li and X. - J. Wu, " DenseFuse: A fusion approach to infrared and visible
images, " IEEE Trans. Image Process., vol. 28, no. 5, pp. 2614-2623, May 2018.
[37] Z. Shi, C. Zhang, D. Ye, P. Qin, R. Zhou, and L. Lei, " MMI-Fuse: Multimodal
brain image fusion with multiattention module, " IEEE Access, vol. 10,
pp. 37200-37214, 2022.
[38] H. Zhang, H. Xu, Y. Xiao, X. Guo, and J. Ma, " Rethinking the image fusion:
A fast unified image fusion network based on proportional maintenance of gradient
and intensity, " Proc. AAAI Conf. Artif. Intell., vol. 34, no. 07, pp. 12797-12804,
2020.
[39] J. Ma, Z. Le, X. Tian, and J. Jiang, " SMFuse: Multi-focus image fusion via selfsupervised
mask-optimization, " IEEE Trans. Comput. Imag., vol. 7, pp. 309-320,
2021.
[40] A. A. Akinyelu, F. Zaccagna, J. T. Grist, M. Castelli, and L. Rundo, " Brain
tumor diagnosis using machine learning, convolutional neural networks, capsule
neural networks and vision transformers, applied to MRI: A survey, " J. Imag.,vol. 8,
no. 8, 2022, Art. no. 205.
[41] Q. Zhou, S. Ye, M. Wen, Z. Huang, M. Ding, and X. Zhang, " Multi-modal
medical image fusion based on densely-connected high-resolution CNN and hybrid
transformer, " Neural Comput. Appl., vol. 34, pp. 1-21, 2022.
[42] J. Ma, L. Tang, F. Fan, J. Huang, X. Mei, and Y. Ma, " SwinFusion: Crossdomain
long-range learning for general image fusion via swin transformer, " IEEE/
CAAJ. Automatica Sinica, vol. 9, no. 7, pp. 1200-1217,Jul. 2022.
[43] Y. Jiang, Y. Zhang, X. Lin, J. Dong, T. Cheng, and J. Liang, " SwinBTS: A
method for 3D multimodal brain tumor segmentation using swin transformer, " Brain
Sciences, vol. 12, no. 6, 2022, Art. no. 797.
[44] A. v. d. Oord, Y. Li, and O. Vinyals, " Representation learning with contrastive
predictive coding, " 2018, arXiv:1807.03748.
[45] Y. Shi, Y. Yi, H. Yan, J. Dai, M. Zhang, and J. Kong, " Region contrast and
supervised locality-preserving projection-based saliency detection, " Vis. Comput.,
vol. 31, no. 9, pp. 1191-1205, 2015.
[46] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia, PE, USA:
Soc. Ind. Appl. Math., 2000.
[47] L. Zhang, L. Zhang, X. Mou, and D. Zhang, " FSIM: A feature similarity index
for image quality assessment, " IEEE Trans. Image Process., vol. 20, no. 8, pp. 2378-
2386, Aug. 2011.
[48] A. Paszke et al., " Automatic differentiation in pytorch, " in Proc.31st Conf. Neural
Inf. Process. Syst., 2017, pp. 1-4.
[49] L. Rundo, A. Tangherloni, C. Militello, M. C. Gilardi, and G. Mauri, " Multimodal
medical image registration using particle swarm optimization: A review, " in
Proc. IEEE Symp. Ser. Comput. Intell., 2016, pp. 1-8.
[50] G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, " VoxelMorph:
A learning framework for deformable medical image registration, " IEEE
Trans. Med. Imag., vol. 38, no. 8, pp. 1788-1800, Aug. 2019.
[51] H. Li, X. J. Wu, and J. Kittler, " MDLatLRR: A novel decomposition method
for infrared and visible image fusion, " IEEE Trans. Image Process., vol. 29, pp. 4733-
4746, 2020.
[52] H. Zhang, H. Xu, Y. Xiao, X. Guo, and J. Ma, " Rethinking the image fusion:
A fast unified image fusion network based on proportional maintenance of gradient
and intensity, " Proc. AAAI Conf. Artif. Intell., vol. 34, no. 7, pp. 12797-12804, 2020.
[53] M. Hossny, S. Nahavandi, and D. Creighton, " Comments on'Information measure
for performance of image fusion', " Electron. Lett., vol. 44, no. 18, pp. 1066-
1067, 2008.
[54] C. A. Xydeas and V. Petrovic, " Objective image fusion performance measure, "
Electron. Lett., vol. 36, no. 4, pp. 308-309, 2000.
[55] A. Toet and M. A. Hogervorst, " Performance comparison of different graylevel
image fusion schemes through a universal image quality index, " Proc. SPIE,
vol. 5096, 2003, pp. 552-561.
[56] Z. Zhu, H. Yin, Y. Chai, Y. Li, and G. Qi, " A novel multi-modality image
fusion method based on image decomposition and sparse representation, " Inf. Sci.,
vol. 432, pp. 516-529, 2018.
[57] S. Li, X. Kang, and J. Hu, " Image fusion with guided filtering, " IEEE Trans.
Image Process., vol. 22, no. 7, pp. 2864-2875, Jul. 2013.
[58] C. Finn, P. Abbeel, and S. Levine, " Model-agnostic meta-learning for fast adaptation
ofdeep networks, " in Proc. Int. Conf. Mach. Learn., 2017, pp. 1126-1135.
80 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2023

IEEE Computational Intelligence Magazine - February 2023

Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - February 2023

Contents
IEEE Computational Intelligence Magazine - February 2023 - Cover1
IEEE Computational Intelligence Magazine - February 2023 - Cover2
IEEE Computational Intelligence Magazine - February 2023 - Contents
IEEE Computational Intelligence Magazine - February 2023 - 2
IEEE Computational Intelligence Magazine - February 2023 - 3
IEEE Computational Intelligence Magazine - February 2023 - 4
IEEE Computational Intelligence Magazine - February 2023 - 5
IEEE Computational Intelligence Magazine - February 2023 - 6
IEEE Computational Intelligence Magazine - February 2023 - 7
IEEE Computational Intelligence Magazine - February 2023 - 8
IEEE Computational Intelligence Magazine - February 2023 - 9
IEEE Computational Intelligence Magazine - February 2023 - 10
IEEE Computational Intelligence Magazine - February 2023 - 11
IEEE Computational Intelligence Magazine - February 2023 - 12
IEEE Computational Intelligence Magazine - February 2023 - 13
IEEE Computational Intelligence Magazine - February 2023 - 14
IEEE Computational Intelligence Magazine - February 2023 - 15
IEEE Computational Intelligence Magazine - February 2023 - 16
IEEE Computational Intelligence Magazine - February 2023 - 17
IEEE Computational Intelligence Magazine - February 2023 - 18
IEEE Computational Intelligence Magazine - February 2023 - 19
IEEE Computational Intelligence Magazine - February 2023 - 20
IEEE Computational Intelligence Magazine - February 2023 - 21
IEEE Computational Intelligence Magazine - February 2023 - 22
IEEE Computational Intelligence Magazine - February 2023 - 23
IEEE Computational Intelligence Magazine - February 2023 - 24
IEEE Computational Intelligence Magazine - February 2023 - 25
IEEE Computational Intelligence Magazine - February 2023 - 26
IEEE Computational Intelligence Magazine - February 2023 - 27
IEEE Computational Intelligence Magazine - February 2023 - 28
IEEE Computational Intelligence Magazine - February 2023 - 29
IEEE Computational Intelligence Magazine - February 2023 - 30
IEEE Computational Intelligence Magazine - February 2023 - 31
IEEE Computational Intelligence Magazine - February 2023 - 32
IEEE Computational Intelligence Magazine - February 2023 - 33
IEEE Computational Intelligence Magazine - February 2023 - 34
IEEE Computational Intelligence Magazine - February 2023 - 35
IEEE Computational Intelligence Magazine - February 2023 - 36
IEEE Computational Intelligence Magazine - February 2023 - 37
IEEE Computational Intelligence Magazine - February 2023 - 38
IEEE Computational Intelligence Magazine - February 2023 - 39
IEEE Computational Intelligence Magazine - February 2023 - 40
IEEE Computational Intelligence Magazine - February 2023 - 41
IEEE Computational Intelligence Magazine - February 2023 - 42
IEEE Computational Intelligence Magazine - February 2023 - 43
IEEE Computational Intelligence Magazine - February 2023 - 44
IEEE Computational Intelligence Magazine - February 2023 - 45
IEEE Computational Intelligence Magazine - February 2023 - 46
IEEE Computational Intelligence Magazine - February 2023 - 47
IEEE Computational Intelligence Magazine - February 2023 - 48
IEEE Computational Intelligence Magazine - February 2023 - 49
IEEE Computational Intelligence Magazine - February 2023 - 50
IEEE Computational Intelligence Magazine - February 2023 - 51
IEEE Computational Intelligence Magazine - February 2023 - 52
IEEE Computational Intelligence Magazine - February 2023 - 53
IEEE Computational Intelligence Magazine - February 2023 - 54
IEEE Computational Intelligence Magazine - February 2023 - 55
IEEE Computational Intelligence Magazine - February 2023 - 56
IEEE Computational Intelligence Magazine - February 2023 - 57
IEEE Computational Intelligence Magazine - February 2023 - 58
IEEE Computational Intelligence Magazine - February 2023 - 59
IEEE Computational Intelligence Magazine - February 2023 - 60
IEEE Computational Intelligence Magazine - February 2023 - 61
IEEE Computational Intelligence Magazine - February 2023 - 62
IEEE Computational Intelligence Magazine - February 2023 - 63
IEEE Computational Intelligence Magazine - February 2023 - 64
IEEE Computational Intelligence Magazine - February 2023 - 65
IEEE Computational Intelligence Magazine - February 2023 - 66
IEEE Computational Intelligence Magazine - February 2023 - 67
IEEE Computational Intelligence Magazine - February 2023 - 68
IEEE Computational Intelligence Magazine - February 2023 - 69
IEEE Computational Intelligence Magazine - February 2023 - 70
IEEE Computational Intelligence Magazine - February 2023 - 71
IEEE Computational Intelligence Magazine - February 2023 - 72
IEEE Computational Intelligence Magazine - February 2023 - 73
IEEE Computational Intelligence Magazine - February 2023 - 74
IEEE Computational Intelligence Magazine - February 2023 - 75
IEEE Computational Intelligence Magazine - February 2023 - 76
IEEE Computational Intelligence Magazine - February 2023 - 77
IEEE Computational Intelligence Magazine - February 2023 - 78
IEEE Computational Intelligence Magazine - February 2023 - 79
IEEE Computational Intelligence Magazine - February 2023 - 80
IEEE Computational Intelligence Magazine - February 2023 - 81
IEEE Computational Intelligence Magazine - February 2023 - 82
IEEE Computational Intelligence Magazine - February 2023 - 83
IEEE Computational Intelligence Magazine - February 2023 - 84
IEEE Computational Intelligence Magazine - February 2023 - 85
IEEE Computational Intelligence Magazine - February 2023 - 86
IEEE Computational Intelligence Magazine - February 2023 - 87
IEEE Computational Intelligence Magazine - February 2023 - 88
IEEE Computational Intelligence Magazine - February 2023 - 89
IEEE Computational Intelligence Magazine - February 2023 - 90
IEEE Computational Intelligence Magazine - February 2023 - 91
IEEE Computational Intelligence Magazine - February 2023 - 92
IEEE Computational Intelligence Magazine - February 2023 - 93
IEEE Computational Intelligence Magazine - February 2023 - 94
IEEE Computational Intelligence Magazine - February 2023 - 95
IEEE Computational Intelligence Magazine - February 2023 - 96
IEEE Computational Intelligence Magazine - February 2023 - 97
IEEE Computational Intelligence Magazine - February 2023 - 98
IEEE Computational Intelligence Magazine - February 2023 - 99
IEEE Computational Intelligence Magazine - February 2023 - 100
IEEE Computational Intelligence Magazine - February 2023 - 101
IEEE Computational Intelligence Magazine - February 2023 - 102
IEEE Computational Intelligence Magazine - February 2023 - 103
IEEE Computational Intelligence Magazine - February 2023 - 104
IEEE Computational Intelligence Magazine - February 2023 - Cover3
IEEE Computational Intelligence Magazine - February 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com