IEEE Computational Intelligence Magazine - May 2023 - 59
initialization, network reconstruction, and optimization) to implement
highly accurate CD for multilayer networks. The experimental
results on various real-world and synthetic networks show
that MOEA-CPI outperforms other state-of-the-art algorithms.
Furthermore, a robustness analysis proves that MOEA-CPI
achieves better robustness than the other comparison algorithms.
Our future work will commit to reducing the computational time
ofthe algorithm to make it a better asset for large-scale networks.
Acknowledgments
This work was supported by the National Key R&D Program (no.
2022YFE0112300); the National Natural Science Foundation for
Distinguished Young Scholars (no. 62025602); the National Natural
Science Foundation of China (nos. 62261136549, 61976181,
62271411, and U22B2036); and the Tencent Foundation and
XPLORERPRIZE.
References
[1] X. Ma, D. Dong, and Q. Wang, " Community detection in multi-layer networks
using joint nonnegative matrix factorization, " IEEE Trans. Knowl. Data Eng.,
vol. 31, no. 2, pp. 273-286, Feb. 2019.
[2] M. Yuvaraj, A. K. Dey, V. Lyubchich, Y. R. Gel, and H. V. Poor, " Topological
clustering ofmultilayer networks, " Proc. Nat. Acad. Sci. USA, vol. 118, no. 21, 2021,
Art. no. e2019994118.
[3] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, " Community
structure in time-dependent, multiscale, and multiplex networks, " Science,
vol. 328, no. 5980, pp. 876-878, 2010.
[4] V. Gligorijevic, Y. Panagakis, and S. Zafeiriou, " Non-negative matrix factorizations
for multiplex network analysis, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 41,
no. 4, pp. 928-940, Apr. 2019.
[5] J. Ni, W. Cheng, W. Fan, and X. Zhang, " ComClus: A self-grouping framework
for multi-network clustering, " IEEE Trans. Knowl. Data Eng., vol. 30, no. 3,
pp. 435-448, Mar. 2018.
[6] W. Liu, S. Wang, M. Gong, and M. Zhang, " An improved multiobjective evolutionary
approach for community detection in multilayer networks, " in Proc. IEEE
Congr. Evol. Comput., 2017, pp. 443-449.
[7] R. S. Solomon, P. Srinivas, A. Das, B. Gamback, and T. Chakraborty, " Understanding
the psycho-sociological facets of homophily in social network communities, "
IEEE Comput. Intell. Mag., vol. 14, no. 2, pp. 28-40, May 2019.
[8] V. Sesum-Cavic, K. Crockett, S. Auephanwiriyakul, and D. Srinivasan, " The
role of the WCI community in the IEEE CIM: An activity report [Society briefs], "
IEEE Comput. Intell. Mag., vol. 14, no. 4, pp. 5-7, Nov. 2019.
[9] T. Wei and J. Zhong, " Towards generalized resource allocation on evolutionary
multitasking for multi-objective optimization, " IEEE Comput. Intell. Mag., vol. 16,
no. 4, pp. 20-37, Nov. 2021.
[10] J. Kim and J.-G. Lee, " Community detection in multi-layer graphs: A survey, "
ACMSIGMOD Rec., vol. 44, no. 3, pp. 37-48, 2015.
[11] D. Jin et al., " A survey of community detection approaches: From statistical
modeling to deep learning, " IEEE Trans. Knowl. Data Eng., vol. 35, no. 2,
pp. 1149-1170, Feb. 2023, doi: 10.1109/TKDE.2021.3104155.
[12] M. A. Rodriguez and J. Shinavier, " Exposing multi-relational networks to singlerelational
network analysis algorithms, " J. Informetrics,vol.4, no. 1,pp.29-41, 2010.
[13] A. Kumar and H. Daume III, " A co-training approach for multi-view spectral
clustering, " in Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 393-400.
[14] X. Chen, X. Li, Y. Deng, S. Chen, and C. Gao, " A new multi-objective evolution
model for community detection in multi-layer networks, " in Proc. 12th Int.
Conf. Knowl. Sci., Eng. Manage., 2019, pp. 197-208.
[15] C. Pizzuti and A. Socievole, " Many-objective optimization for community detection
in multi-layer networks, " in Proc. IEEECongr. Evol. Comput., 2017, pp. 411-418.
[16] X. Dong, P. Frossard, P. Vandergheynst, and N. Nefedov, " Clustering with
multi-layer graphs: A spectral perspective, " IEEE Trans. Signal Process., vol. 60,
no. 11, pp. 5820-5831, Nov. 2012.
[17] X. Dong, P. Frossard, and N. Nefedov, " Clustering on multi-layer graphs via
subspace analysis on Grassmann manifolds, " IEEE Trans. Signal Process., vol. 62,
no. 4, pp. 905-918, Feb. 2014.
[18] L. Yang, X. Cao, D. Jin, X. Wang, and D. Meng, " Aunified semi-supervised
community detection framework using latent space graph regularization, " IEEE
Trans. Cybern., vol. 45, no. 11, pp. 2585-2598, Nov. 2015.
[19] Z. Wang, L. Wang, A. Szolnoki, and M. Perc, " Evolutionary games on multilayer
networks: A colloquium, " Eur. Phys.J. B, vol. 88, no. 5, pp. 1-15, 2015.
[20] L. Ma, M. Gong, J. Yan, W. Liu, and S. Wang, " Detecting composite communities
in multiplex networks: A multilevel memetic algorithm, " Swarm Evol. Computation,
vol. 39, pp. 177-191, 2018.
[21] B. Wang et al., " Similarity network fusion for aggregating data types on a genomic
scale, " Nature Methods, vol. 11, no. 3, pp. 333-337, 2014.
[22] M. De Domenico, A. Lancichinetti, A. Arenas, and M. Rosvall, " Identifying
modular flows on multilayer networks reveals highly overlapping organization in
interconnected systems, " Phys. Rev. X, vol. 5, no. 1, 2015, Art. no. 011027.
[23] C. Gao, J. Zhu, F. Zhang, Z. Wang, and X. Li, " A novel representation learning
for dynamic graphs based on graph convolutional networks, " IEEE Trans. Cybern.,
early access, Mar. 25, 2022, doi: 10.1109/TCYB.2022.3159661.
[24] J. Gao, J. Han, J. Liu, and C. Wang, " Multi-view clustering via joint nonnegative
matrix factorization, " in Proc. 13th SIAMInt. Conf. Data Mining,2013, pp.252-260.
[25] C. C. Coello, " Evolutionary multi-objective optimization: A historical view of
the field, " IEEE Comput. Intell. Mag., vol. 1, no. 1, pp. 28-36, Feb. 2006.
[26] D. Datta, J. R. Figueira, C. M. Fonseca, and F. Tavares-Pereira, " Graph partitioning
through a multi-objective evolutionary algorithm: A preliminary study, " in
Proc. 10th Genet. Evol. Comput. Conf., 2008, pp. 625-632.
[27] C. Pizzuti, " A multiobjective genetic algorithm to find communities in complex
networks, " IEEE Trans. Evol. Comput., vol. 16, no. 3, pp. 418-430, Jun. 2012.
[28] Z. Yin, Y. Deng, F. Zhang, Z. Luo, P. Zhu, and C. Gao, " A semi-supervised
multi-objective evolutionary algorithm for multi-layer network community detection, "
in Proc. 14th Int. Conf. Knowl. Sci., Eng. Manage., 2021, pp. 179-190.
[29] X. Li, " Positive-incentive noise, " IEEE Trans. Neural Netw. Learn. Syst., early
access, Dec. 29, 2022, doi: 10.1109/TNNLS.2022.3224577.
[30] C. Pizzuti, " Evolutionary computation for community detection in networks:
A review, " IEEE Trans. Evol. Comput., vol. 22, no. 3, pp. 464-483, Jun. 2018.
[31] C. Gao, M. Liang, X. Li, Z. Zhang, Z. Wang, and Z. Zhou, " Network community
detection based on the Physarum-inspired computational framework, " IEEE/
ACMTrans. Comput. Biol. Bioinf.,vol. 15,no. 6,pp.1916-1928, Nov./Dec. 2016.
[32] Z. Wang, C. Wang, X. Li, C. Gao, X. Li, and J. Zhu, " Evolutionary Markov
dynamics for network community detection, " IEEE Trans. Knowl. Data Eng.,
vol. 34, no. 3, pp. 1206-1220, Mar. 2022.
[33] X. Ma, L. Gao, X. Yong, and L. Fu, " Semi-supervised clustering algorithm for
community structure detection in complex networks, " Physica A: Stat. Mechanics
Appl., vol. 389, no. 1, pp. 187-197, 2010.
[34] J. Ebrahimi and M. S. Abadeh, " Semi supervised clustering: A pareto approach, "
in Proc. 8th Int. Conf. Mach. Learn. Data Mining Pattern Recognit., 2012, pp. 237-251.
[35] A. Grover and J. Leskovec, " node2vec: Scalable feature learning for networks, " in
Proc. 22nd ACMSIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016, pp. 855-864.
[36] J. Leskovec, K. J. Lang, and M. W. Mahoney, " Empirical comparison of algorithms
for network community detection, " in Proc. 19th Int. Conf. World Wide Web,
2010, pp. 631-640.
[37] J. Paul, " Distribution de la Flore Alpine dans le Bassin des Dranses et dans quelques
regions voisines, " Bull. de la Societe Vaudoise des Sci. Naturelles, vol. 37, pp. 241-272, 1901.
[38] Y. Pan, D.-H. Li, J.-G. Liu, andJ.-Z. Liang, " Detecting community structure in
complex networks via node similarity, " Physica A: Stat. Mechanics Appl., vol. 389,
no. 14, pp. 2849-2857, 2010.
[39] P. Liakos, A. Ntoulas, and A. Delis, " Scalable link community detection: A local
dispersion-aware approach, " in Proc. IEEE Int. Conf. Big Data, 2016, pp. 716-725.
[40] S. M. Elsayed, R. A. Sarker, N. M. Hamza, C. A. C. Coello, and E. MezuraMontes,
" Enhancing evolutionary algorithms by efficient population initialization
for constrained problems, " in Proc. IEEE Congr. Evol. Comput., 2020, pp. 1-8.
[41] M. Gong, Q. Cai, X. Chen, and L. Ma, " Complex network clustering by multiobjective
discrete particle swarm optimization based on decomposition, " IEEE
Trans. Evol. Comput., vol. 18, no. 1, pp. 82-97, Feb. 2014.
[42] J. Branke, K. Deb, H. Dierolf, and M. Osswald, " Finding knees in multi-objective
optimization, " in Proc. 8th Parallel Problem Solving Nature, 2004, pp. 722-731.
[43] T. A. Snijders, P. E. Pattison, G. L. Robins, and M. S. Handcock, " New specifications
for exponential random graph models, " Sociol. Methodol., vol. 36, no. 1,
pp. 99-153, 2006.
[44] M. De Domenico, V. Nicosia, A. Arenas, and V. Latora, " Structural reducibility
ofmultilayer networks, " Nature Commun., vol. 6, no. 1, pp. 1-9, 2015.
[45] P. Brodka, " A method for group extraction and analysis in multilayer social networks, "
Ph.D. dissertation, Worclaw Univ. Technol., Worclaw, Poland, 2016.
[46] C. D. Manning, P. Raghavan, and H. Sch€utze, Introduction to Information
Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008.
[47] P. Chen and A. O. Hero, " Multilayer spectral graph clustering via convex layer
aggregation: Theory and algorithms, " IEEE Trans. Signal Inf. Process. Netw.,vol. 3,
no. 3, pp. 553-567, Sep. 2017.
[48] H. Wang, Y. Yang, and B. Liu, " GMC: Graph-based multi-view clustering, "
IEEE Trans. Knowl. Data Eng., vol. 32, no. 6, pp. 1116-1129, Jun. 2020.
[49] C. Gao, S. Chen, X. Li, J. Huang, and Z. Zhang, " A Physarum-inspired optimization
algorithm for load-shedding problem, " Appl. Soft Comput., vol. 61, pp. 239-
255, 2017.
[50] S. Garcıa, D. Molina, M. Lozano, and F. Herrera, " A study on the use ofnonparametric
tests for analyzing the evolutionary algorithms' behaviour: A case study
on the CEC'2005 special session on real parameter optimization, " J. Heuristics,
vol. 15, no. 6, pp. 617-644, 2009.
MAY 2023 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 59
http://dx.doi.org/10.1109/TCYB.2022.3159661
http://dx.doi.org/10.1109/TNNLS.2022.3224577
http://dx.doi.org/10.1109/TKDE.2021.3104155
IEEE Computational Intelligence Magazine - May 2023
Table of Contents for the Digital Edition of IEEE Computational Intelligence Magazine - May 2023
Contents
IEEE Computational Intelligence Magazine - May 2023 - Cover1
IEEE Computational Intelligence Magazine - May 2023 - Cover2
IEEE Computational Intelligence Magazine - May 2023 - Contents
IEEE Computational Intelligence Magazine - May 2023 - 2
IEEE Computational Intelligence Magazine - May 2023 - 3
IEEE Computational Intelligence Magazine - May 2023 - 4
IEEE Computational Intelligence Magazine - May 2023 - 5
IEEE Computational Intelligence Magazine - May 2023 - 6
IEEE Computational Intelligence Magazine - May 2023 - 7
IEEE Computational Intelligence Magazine - May 2023 - 8
IEEE Computational Intelligence Magazine - May 2023 - 9
IEEE Computational Intelligence Magazine - May 2023 - 10
IEEE Computational Intelligence Magazine - May 2023 - 11
IEEE Computational Intelligence Magazine - May 2023 - 12
IEEE Computational Intelligence Magazine - May 2023 - 13
IEEE Computational Intelligence Magazine - May 2023 - 14
IEEE Computational Intelligence Magazine - May 2023 - 15
IEEE Computational Intelligence Magazine - May 2023 - 16
IEEE Computational Intelligence Magazine - May 2023 - 17
IEEE Computational Intelligence Magazine - May 2023 - 18
IEEE Computational Intelligence Magazine - May 2023 - 19
IEEE Computational Intelligence Magazine - May 2023 - 20
IEEE Computational Intelligence Magazine - May 2023 - 21
IEEE Computational Intelligence Magazine - May 2023 - 22
IEEE Computational Intelligence Magazine - May 2023 - 23
IEEE Computational Intelligence Magazine - May 2023 - 24
IEEE Computational Intelligence Magazine - May 2023 - 25
IEEE Computational Intelligence Magazine - May 2023 - 26
IEEE Computational Intelligence Magazine - May 2023 - 27
IEEE Computational Intelligence Magazine - May 2023 - 28
IEEE Computational Intelligence Magazine - May 2023 - 29
IEEE Computational Intelligence Magazine - May 2023 - 30
IEEE Computational Intelligence Magazine - May 2023 - 31
IEEE Computational Intelligence Magazine - May 2023 - 32
IEEE Computational Intelligence Magazine - May 2023 - 33
IEEE Computational Intelligence Magazine - May 2023 - 34
IEEE Computational Intelligence Magazine - May 2023 - 35
IEEE Computational Intelligence Magazine - May 2023 - 36
IEEE Computational Intelligence Magazine - May 2023 - 37
IEEE Computational Intelligence Magazine - May 2023 - 38
IEEE Computational Intelligence Magazine - May 2023 - 39
IEEE Computational Intelligence Magazine - May 2023 - 40
IEEE Computational Intelligence Magazine - May 2023 - 41
IEEE Computational Intelligence Magazine - May 2023 - 42
IEEE Computational Intelligence Magazine - May 2023 - 43
IEEE Computational Intelligence Magazine - May 2023 - 44
IEEE Computational Intelligence Magazine - May 2023 - 45
IEEE Computational Intelligence Magazine - May 2023 - 46
IEEE Computational Intelligence Magazine - May 2023 - 47
IEEE Computational Intelligence Magazine - May 2023 - 48
IEEE Computational Intelligence Magazine - May 2023 - 49
IEEE Computational Intelligence Magazine - May 2023 - 50
IEEE Computational Intelligence Magazine - May 2023 - 51
IEEE Computational Intelligence Magazine - May 2023 - 52
IEEE Computational Intelligence Magazine - May 2023 - 53
IEEE Computational Intelligence Magazine - May 2023 - 54
IEEE Computational Intelligence Magazine - May 2023 - 55
IEEE Computational Intelligence Magazine - May 2023 - 56
IEEE Computational Intelligence Magazine - May 2023 - 57
IEEE Computational Intelligence Magazine - May 2023 - 58
IEEE Computational Intelligence Magazine - May 2023 - 59
IEEE Computational Intelligence Magazine - May 2023 - 60
IEEE Computational Intelligence Magazine - May 2023 - 61
IEEE Computational Intelligence Magazine - May 2023 - 62
IEEE Computational Intelligence Magazine - May 2023 - 63
IEEE Computational Intelligence Magazine - May 2023 - 64
IEEE Computational Intelligence Magazine - May 2023 - 65
IEEE Computational Intelligence Magazine - May 2023 - 66
IEEE Computational Intelligence Magazine - May 2023 - 67
IEEE Computational Intelligence Magazine - May 2023 - 68
IEEE Computational Intelligence Magazine - May 2023 - 69
IEEE Computational Intelligence Magazine - May 2023 - 70
IEEE Computational Intelligence Magazine - May 2023 - 71
IEEE Computational Intelligence Magazine - May 2023 - 72
IEEE Computational Intelligence Magazine - May 2023 - 73
IEEE Computational Intelligence Magazine - May 2023 - 74
IEEE Computational Intelligence Magazine - May 2023 - 75
IEEE Computational Intelligence Magazine - May 2023 - 76
IEEE Computational Intelligence Magazine - May 2023 - 77
IEEE Computational Intelligence Magazine - May 2023 - 78
IEEE Computational Intelligence Magazine - May 2023 - 79
IEEE Computational Intelligence Magazine - May 2023 - 80
IEEE Computational Intelligence Magazine - May 2023 - 81
IEEE Computational Intelligence Magazine - May 2023 - 82
IEEE Computational Intelligence Magazine - May 2023 - 83
IEEE Computational Intelligence Magazine - May 2023 - 84
IEEE Computational Intelligence Magazine - May 2023 - 85
IEEE Computational Intelligence Magazine - May 2023 - 86
IEEE Computational Intelligence Magazine - May 2023 - 87
IEEE Computational Intelligence Magazine - May 2023 - 88
IEEE Computational Intelligence Magazine - May 2023 - 89
IEEE Computational Intelligence Magazine - May 2023 - 90
IEEE Computational Intelligence Magazine - May 2023 - 91
IEEE Computational Intelligence Magazine - May 2023 - 92
IEEE Computational Intelligence Magazine - May 2023 - 93
IEEE Computational Intelligence Magazine - May 2023 - 94
IEEE Computational Intelligence Magazine - May 2023 - 95
IEEE Computational Intelligence Magazine - May 2023 - 96
IEEE Computational Intelligence Magazine - May 2023 - 97
IEEE Computational Intelligence Magazine - May 2023 - 98
IEEE Computational Intelligence Magazine - May 2023 - 99
IEEE Computational Intelligence Magazine - May 2023 - 100
IEEE Computational Intelligence Magazine - May 2023 - 101
IEEE Computational Intelligence Magazine - May 2023 - 102
IEEE Computational Intelligence Magazine - May 2023 - 103
IEEE Computational Intelligence Magazine - May 2023 - 104
IEEE Computational Intelligence Magazine - May 2023 - Cover3
IEEE Computational Intelligence Magazine - May 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202311
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202308
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202305
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202302
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202211
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202208
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202205
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202202
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202111
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202108
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202105
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202102
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202011
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202008
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202005
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_202002
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201911
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201908
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201905
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201902
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201811
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201808
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201805
https://www.nxtbook.com/nxtbooks/ieee/computationalintelligence_201802
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring17
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring16
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring15
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring14
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_summer13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_spring13
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_winter12
https://www.nxtbook.com/nxtbooks/ieee/computational_intelligence_fall12
https://www.nxtbookmedia.com