IEEE Geoscience and Remote Sensing Magazine - December 2016 - 28

TABLE 3. A SUMMARY OF THE MABEL FLIGHTS
BY TARGET AND YEAR.
TARGETS

2010

2011

2012

2013

2014

Calibration

0

0

2

1

8

Desert

2

3

0

3

0

Forests

1

2

10

5

3

Fresh water

1

4

4

0

5

Glaciers

0

0

4

0

3

Ice sheet

0

0

7

0

0

ICESat tracks

1

1

0

0

0

Mountains

3

4

6

4

5

Ocean

1

4

6

2

1

Salt flat

1

0

0

0

1

Sea ice

0

0

4

0

3

Snow

1

1

1

0

0

Volcano

0

0

0

0

1

Wildfire

0

0

0

0

1

(Note that flights can have more than one target. For complete MABEL flight information,
please visit the NASA ICESat-2 website at http://icesat.gsfc.nasa.gov/icesat2/.)

applications [11], [12] during the past four decades. The
Tropical Rainfall Monitoring Mission has been used to
identify and correct problems with ground-based weather
radar [13] while providing comprehensive information on
precipitation extremes. More recently, NASA's SMAP has
been a pioneer in developing applications programs for
its data [2].
As a result of numerous outreach efforts, the ICESat-2
applications program has identified societal benefit areas
that may have an interest in altimetry data from the Group
on Earth Observations (GEO) applications, which include
the following:
◗ disasters including sea-ice monitoring for improved
shipping navigation, keeping an eye on volcanic hazards, and monitoring sea-level rise for anticipating storm
surge impacts
◗ ecosystems including forest, canopy modeling, and vegetation mapping
◗ health including air quality and other atmospheric
studies
◗ water including operational water resources planning;
weather forecasting; and modeling of inland water, hydrological, and floods.
◗ climate including assessing, understanding, and predicting change
◗ biodiversity including monitoring the condition and
extent of ecosystems
◗ agriculture including land-cover change, changes in
the extent of land degradation and deforestation, and
changes in irrigation water availability
◗ energy including renewable energy potential [14].
Encouraging the use of ICESat-2 data within each of
these areas requires engaging with stakeholders who have a
28

compelling need for highly accurate information in one of
these areas but who lack familiarity with photon-counting
lidar instruments or space-based approaches to product development [3]. Because of the new design of ATLAS compared
to the GLAS instrument on the first ICESat mission, an exploration of the benefits of the photon-counting approach for
applications is an important goal. Early Adopter projects are
selected in the different societal benefit areas listed to improve
the ability of the mission to understand the potential utility of
ICESat-2 data, to provide a wider set of applications that benefit society, and to foster innovative use of the measurements
to inform environmental decision making [1].
As of September 2015, there have been three calls for
Early Adopters open to any individual or group interested in
exploring the potential use of ICESat-2 data. The program,
which hosts a total of 16 Early Adopter groups, has prelaunch
research that covers most GEO societal benefit areas, as illustrated in Table 4. The majority of Early Adopter research
is conducted for sea ice, vegetation, and hydrological studies.
Four Early Adopter groups are exploring the utility of ICESat-2
data for prediction of the sea-ice environment in the Arctic
with benefits to applications in the areas of disasters, climate,
biodiversity, ecosystems, and water. Five Early Adopters are
conducting research to measure the change in vegetation
height on country, regional, and global scales with benefits to
applications in the areas of ecosystems, biodiversity, and disasters. Additionally, four groups are assessing the feasibility
of using ICESat-2 for hydrological research related to applications in the water, agriculture, hazards, and ecosystems areas.
Two Early Adopter groups are conducting research on the
use of ICESat-2 to improve digital elevation models (DEMs)
for volcanic and geohazard-related research and ice volume
discharge studies with benefits to disaster applications.
One Early Adopter group is looking at the potential to use
ICESat-2 for deriving aerosol optical properties in the polar
region with potential benefits to applications in the areas of
health, ecosystems, biodiversity, and disasters. Additional
work will be necessary to identify underrepresented potential applications for the mission as well as to expand the
potential users in the energy, agriculture, and health areas.
Each of the four Early Adopter projects described below
conducts applied-science analysis and studies that increase
the knowledge of the mission about how ICESat-2 mission data will be used. These four projects demonstrate the
breadth of the focus areas that have emanated from the program, and they include sea-ice forecasting for maritime decision making, semiarid ecosystem monitoring, water-level
tracking for lakes and reservoirs, and volcanic and geohazard identification. Each requires investigation into how the
data will be used, the decisions the system will influence,
and the requirements of the system for satellite data.
VALIDATING THE U.S. NAVY'S
ICE FORECASTING SYSTEM
ICESat-2's high-accuracy, dense observation data set over
the Arctic regions will provide high-quality validation data
ieee Geoscience and remote sensing magazine

december 2016


http://icesat.gsfc.nasa.gov/icesat2/

Table of Contents for the Digital Edition of IEEE Geoscience and Remote Sensing Magazine - December 2016

IEEE Geoscience and Remote Sensing Magazine - December 2016 - Cover1
IEEE Geoscience and Remote Sensing Magazine - December 2016 - Cover2
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 1
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 2
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 3
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 4
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 5
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 6
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 7
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 8
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 9
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 10
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 11
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 12
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 13
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 14
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 15
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 16
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 17
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 18
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 19
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 20
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 21
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 22
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 23
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 24
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 25
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 26
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 27
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 28
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 29
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 30
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 31
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 32
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 33
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 34
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 35
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 36
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 37
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 38
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 39
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 40
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 41
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 42
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 43
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 44
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 45
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 46
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 47
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 48
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 49
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 50
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 51
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 52
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 53
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 54
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 55
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 56
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 57
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 58
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 59
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 60
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 61
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 62
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 63
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 64
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 65
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 66
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 67
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 68
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 69
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 70
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 71
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 72
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 73
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 74
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 75
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 76
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 77
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 78
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 79
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 80
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 81
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 82
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 83
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 84
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 85
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 86
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 87
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 88
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 89
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 90
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 91
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 92
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 93
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 94
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 95
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 96
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 97
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 98
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 99
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 100
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 101
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 102
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 103
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 104
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 105
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 106
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 107
IEEE Geoscience and Remote Sensing Magazine - December 2016 - 108
IEEE Geoscience and Remote Sensing Magazine - December 2016 - Cover3
IEEE Geoscience and Remote Sensing Magazine - December 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2013
https://www.nxtbookmedia.com