IEEE Geoscience and Remote Sensing Magazine - June 2014 - 95
Chattanooga
Huntsville
Northport
Gadsden
Tuscaloosa
Birmingham
Tuscaloosa
Montgomery
Columbus
(a)
(b)
FiguRe 7. (a) Tornado damage paths from an April 2011 outbreak in Alabama and surrounding states; (b) Damage path of the April 27,
2001 tornado through Tuscaloosa, Alabama.
Outage Forecast System (C/NOFS), as a key member of the
Geostationary Operational Environmental Satellite R-Series
(GOES-R) Level 1b and 2 product production team [33]-[35]
and as customer, algorithm, and production developers for
in-house commercial product development.
The architecture outlined in Fig. 6 provides a framework
that AER has used extensively to develop in-house and
external simulation/data analysis tools (see Section 5) to
assess the expected performance of remote sensing instruments and to employ these analyses in a number of experimental and field campaigns. Common object-oriented
software elements have been developed and combined
in reusable fashion to provide the operational software of
such instruments as the NPP Suomi/JPSS ATMS/CrIS, and
for the definition of mission requirements for future programs such as ASCENDS and ACES instrument.
8. ReseaRch to commeRcial PRoducts
Tornado ProducT
Tornadoes are uniquely challenging weather events for first
responders, insurers, emergency managers, and others who
need rapid assessment of damage extent and severity in the
wake of a storm. A single tornado may cause devastation
along a concentrated path in a heavily populated area, and
a multi-storm outbreak may include dozens of devastating tornadoes causing damage over hundreds of miles in
a matter of hours. After a storm passes, users' needs vary
from regional situational awareness about the scope of the
storm and the affected municipalities to neighborhoodscale guidance on where to deploy resources for hard-hit
and peripheral areas alike.
AER has developed a rapid-response tornado damage
path product to provide critical location-specific information in near real time in the aftermath of a tornado. The
product leverages the routine observations available from
high- to moderate-resolution (~10-500-m) remote sensing platforms to assess damage paths as soon as the first
june 2014
ieee Geoscience and remote sensing magazine
post-storm imagery becomes available. The path delineation methodology uses multispectral change detection
techniques to reveal localized storm signatures relative to
pre-storm conditions. Automated scripts download and
preprocess imagery for reported tornado locations and,
as soon as new imagery is available, custom analysis software allows analysts to quickly assess damage paths from
among a selection of pre- and post-storm imagery, difference imagery, and contextual maps. This methodology
has been used to successfully delineate damage paths that
may be undetectable by other remote means, including
paths from weak or narrow storms, paths crossing parking lots or open fields where damage is less apparent,
and paths through low population density areas that are
lower priorities for post-storm surveys.
Fig. 7 illustrates AER's tornado path analyses for the
large outbreak in April 2011 that included 38 tornadoes
rated EF-3 or higher on the five-point Enhanced Fujita
scale of tornado damage. AER's analysis mapped 40 paths,
including the EF-4 tornado that caused extensive damage
stretching from Tuscaloosa to Birmingham, Alabama.
SPace environmenT and effecTS Tool (SeeT)
The Systems Tool Kit (STK) Space Environment and Effects
Tool (SEET) is designed for use by spacecraft designers,
analysts and operators to evaluate the effects of the space
environment on their spacecraft. AER developed SEET to
provide comprehensive modeling of the near-Earth space
environment and its expected impacts on space vehicles.
SEET calculates spacecraft exposure to ionizing particles,
thermal radiation and space debris throughout the orbit.
The functionality is provided by five key features using
rigorous implementations of standard Air Force Research
Laboratory (AFRL) and NASA scientific models of the
space environment, including CRRESELE/PRO/RAD,
APEXRAD, AE8/AP8, and SHIELDOSE2 to describe the
trapped radiation environment. AER has worked for years
under contract with AFRL to help develop these models
95
Table of Contents for the Digital Edition of IEEE Geoscience and Remote Sensing Magazine - June 2014
IEEE Geoscience and Remote Sensing Magazine - June 2014 - Cover1
IEEE Geoscience and Remote Sensing Magazine - June 2014 - Cover2
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 1
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 2
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 3
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 4
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 5
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 6
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 7
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 8
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 9
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 10
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 11
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 12
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 13
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 14
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 15
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 16
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 17
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 18
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 19
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 20
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 21
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 22
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 23
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 24
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 25
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 26
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 27
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 28
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 29
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 30
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 31
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 32
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 33
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 34
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 35
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 36
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 37
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 38
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 39
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 40
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 41
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 42
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 43
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 44
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 45
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 46
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 47
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 48
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 49
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 50
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 51
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 52
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 53
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 54
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 55
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 56
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 57
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 58
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 59
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 60
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 61
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 62
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 63
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 64
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 65
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 66
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 67
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 68
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 69
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 70
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 71
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 72
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 73
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 74
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 75
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 76
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 77
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 78
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 79
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 80
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 81
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 82
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 83
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 84
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 85
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 86
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 87
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 88
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 89
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 90
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 91
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 92
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 93
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 94
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 95
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 96
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 97
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 98
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 99
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 100
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 101
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 102
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 103
IEEE Geoscience and Remote Sensing Magazine - June 2014 - 104
IEEE Geoscience and Remote Sensing Magazine - June 2014 - Cover3
IEEE Geoscience and Remote Sensing Magazine - June 2014 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2013
https://www.nxtbookmedia.com