IEEE Geoscience and Remote Sensing Magazine - June 2016 - 25

visible units v = {0, 1} D and hidden units h = {0, 1} F . A
joint configuration of the units has an energy given by
E (v, h: i) = -

D

F

D

i= 1

j= 1

F

/ b i v i - / a j h j - / / w i v i h j,

(7)

i= 1 j= 1

where i = {b i, a j, w ij} and wij is the weight between visible
unit i and hidden unit j, and bi and aj are bias terms of the
visible and hidden unit, respectively.
The joint distribution over the units is defined by
P (v, h: i) =
Z (i) =

1 -E (v, h: i)
e
Z (i)

(8)

/ / E (v, h: i),

(9)

v

h

where Z ^i h is the normalizing constant. The network assigns a probability to every input vector via the energy function. The probability of the training vector can be raised by
adjustment to lower the energy, as given in (7). The conditional distributions of hidden unit h and input vector v are
given by the logistic function
D

p (h j = 1|v) = g d / W ij v i + a j n ,

(10)

i=1
F

p (v j = 1|h) = g e / W ij h i + b j o ,

(11)

j=1

g (x) =

1
.
1 + e (- x)

(12)

Once the states of hidden units are chosen, the input data
can be reconstructed by setting each vi to 1 with the probability in (11). The hidden units' states are then updated to
represent the features of the reconstruction. The learning of
W is done through a method called contrastive divergence (CD).
The DBN has been applied to the RS image spatial-spectral
classification and shows superior performance compared to
the conventional feature dimensionality-reduction methods,
such as principal component analysis (PCA), and classifiers,
such as support vector machines (SVMs) [55], [29]. In recent
years, it has also been successfully proposed for object recognition [56] and scene classification [57].
sParse CodinG
Sparse coding is a type of unsupervised method for learning sets of overcomplete bases to represent data efficiently to
find a set of basis vectors z i such that we can represent an
input vector x as a linear combination of these basis vectors:
x=

k

/ ai zi .

(13)

i= 1

While techniques such as PCA allow us to learn a complete
set of basis vectors efficiently, we wish to learn an overcomplete set of basis vectors to represent the input vectors x. The
advantage of having an overcomplete basis set is that our basis vectors are better able to capture structures and patterns
inherent in the input data. However, with an overcomplete
26

basis set, the coefficients ai are no longer uniquely determined by the input vector x. Therefore, in sparse coding, we
introduce the additional criterion of sparsity to resolve the
degeneracy introduced by the overcompleteness.
We define the sparse coding cost function on a set of m
input vectors as
m

min / x j a, z

j= 1

k

2

i= 1

2

/ a ij z i

k

+ m / S (a i ) ,
j

(14)

i= 1

where S ^ $ h is a sparsity cost function that penalizes ai for
being far from zero. We can interpret the first term of the
sparse coding objective as a reconstruction term that tries
to force the algorithm to provide a good representation of
x, and the second term can be defined as a sparsity penalty
that forces our representation of x to be sparse.
A large number of sparse coding methods have been proposed. Notably, for RS scene classification, Cheriyadat [58]
introduces a variant of sparse coding that combines local
scale-invariant feature transform (SIFT)-based feature descriptors to generate a new sparse representation, while, in
[59], the sparse coding is used to reduce the potential redundant information in the feature representation. In addition,
as a computationally efficient unsupervised feature-learning technique, k-means clustering has also been played as
a single-layer feature extractor for RS scene classification
[60]-[62] and achieves state-of-the-art performance.
deeP LeARnIng foR ReMote sensIng dAtA
The "Basic Algorithms in Deep Learning" section discussed
some of the basic elements used in constructing a DL architecture as well as the general framework. In practice,
the mathematical problems of the various RS data analysis
techniques can be regarded as special cases of input-output
data combined with a particular DL network based on the
aforementioned algorithms. In this section, we provide a
tutorial on DL for RS data from four perspectives: 1) image
preprocessing, 2) pixel-based classification, 3) target recognition, and 4) scene understanding.
remote sensinG imaGe PreProCessinG
In practice, the observed RS images are not always as satisfactory as we demand due to many factors, including the
limitations of the sensors and the influence of the atmosphere. Therefore, there is a need for RS image preprocessing to enhance the image quality before the subsequent
classification and recognition tasks. According to the related RS literature, most of the existing methods in RS image
denoising, deblurring, superresolution, and pan sharpening are based on the standard image-processing techniques
in the signal processing society, while there are very few
machine-learning-based techniques. In fact, if we can effectively model the intrinsic correlation between the input
(observed data) and output (ideal data) by a set of training
samples, then the observed RS image could be enhanced
by the same model. According to the basic techniques in
the previous section, such an intrinsic correlation can be
ieee Geoscience and remote sensing magazine

june 2016



Table of Contents for the Digital Edition of IEEE Geoscience and Remote Sensing Magazine - June 2016

IEEE Geoscience and Remote Sensing Magazine - June 2016 - Cover1
IEEE Geoscience and Remote Sensing Magazine - June 2016 - Cover2
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 1
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 2
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 3
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 4
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 5
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 6
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 7
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 8
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 9
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 10
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 11
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 12
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 13
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 14
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 15
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 16
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 17
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 18
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 19
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 20
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 21
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 22
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 23
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 24
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 25
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 26
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 27
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 28
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 29
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 30
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 31
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 32
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 33
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 34
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 35
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 36
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 37
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 38
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 39
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 40
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 41
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 42
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 43
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 44
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 45
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 46
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 47
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 48
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 49
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 50
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 51
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 52
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 53
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 54
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 55
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 56
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 57
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 58
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 59
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 60
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 61
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 62
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 63
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 64
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 65
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 66
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 67
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 68
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 69
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 70
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 71
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 72
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 73
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 74
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 75
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 76
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 77
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 78
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 79
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 80
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 81
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 82
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 83
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 84
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 85
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 86
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 87
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 88
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 89
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 90
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 91
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 92
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 93
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 94
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 95
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 96
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 97
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 98
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 99
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 100
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 101
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 102
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 103
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 104
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 105
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 106
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 107
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 108
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 109
IEEE Geoscience and Remote Sensing Magazine - June 2016 - 110
IEEE Geoscience and Remote Sensing Magazine - June 2016 - Cover3
IEEE Geoscience and Remote Sensing Magazine - June 2016 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2013
https://www.nxtbookmedia.com