IEEE Geoscience and Remote Sensing Magazine - June 2019 - 168

that the SGD starting point has better convergence properties. The initialization policy from [74] is especially suited
for CNNs including ReLU activation. Also, because of their
large number of weights, the fully connected layers are often prone to overfitting. Dropout [75] significantly alleviates this phenomenon. Moreover, deeper networks often
benefit from a larger batch size and the use of batch normalization [76], which smooths the loss landscape.
Training sample preparation also includes a few practices that can be applied for better performances. First, shuffling the data set after each epoch helps avoiding recurring
patterns in the SGD and overall makes the optimization
smoother. Data augmentation is especially useful to introduce equivariances. For example, in image data, horizontal and vertical symmetries can be applied by flipping
the training patches randomly during the training. This
increases the diversity of the examples and the robustness
of the model. Moreover, many data sets present large class
imbalances, where one or a few classes dominate the labels.
One simple solution is to weight them according to the loss
function to penalize the less frequently occurring classes
more. Inverse-median frequency class weighting is commonly used to do so, e.g., in semantic segmentation. This is
equivalent to showing more examples from the rarer classes
to the model.
It is fundamental to be careful when tuning the optimization hyperparameters. Their choice should be based on
a validation set that is not the same as the test set, or the
test results will be optimistic. If this is not possible, a crossvalidation over several train and test splits helps to assess
how robust the hyperparameters are to avoid overfitting.
Finally, during inference, it is recommended to use the
network that reached the best validation score and not necessarily the last epoch weights. This implies saving regular
checkpoints during the training. We tried our best in our
toolbox to apply these best practices while letting advanced
users use their own parameters where needed.
EXPERIMENTS
In this section, we compare several deep architectures from
the literature for hyperspectral image classification in a remote sensing context. To the best of our knowledge, there

(a)

(b)

FIGURE 9. The train (light blue), test (dark blue), receptive field

(light green), and test pixel in the receptive field (dark green). The
dot indicates the center pixel. The 2D receptive field of a CNN can
involuntarily include samples from the test set, making the network
overfit and biasing the evaluation. (a) Random train and test and
(b) disjointed train and test.
168

have been no principled analyses of the various deep convolutional networks introduced in the past. Indeed, works
from the literature performed experiments using slightly
different setups:
◗ Most articles divided the data sets into train and test
splits by randomly sampling over the whole image. A
few articles [43], [77] used the standard train and test
split from the GRSS DASE initiative.
◗ Some authors considered only a subset of the classes.
This was especially prominent for Indian Pines, where
the classes with fewer than 100 samples were often excluded [42], [49].
◗ Even when the train and test splits are done the same
way, the number of samples in the training set might
vary. Some authors used 20% of all of the training set,
while others used a fixed amount of samples for each
(e.g., 200 samples for each class).
◗ Some authors further divided the training set into a
proper training set and a validation set for hyperparameter tuning, while others performed the tuning directly
on the test set.
In this article, we argue that randomly sampling the
training samples over the whole image is not a realistic use
case. Moreover, we affirm that it is a poor indication of generalization power. Indeed, neighboring pixels will be highly
correlated, which means that the test set will be very close to
the training set. To demonstrate this, we consider a nearestneighbor baseline using randomly sampled training pixels
and another using colocated training pixels well-separated
from the test set.
Also, in the case of 2D and 3D approaches, especially
CNNs, the receptive field of the network might involuntarily
include test samples in the training set. Indeed, the first convolutional layer also sees the neighbors of the central pixel,
which might be in the test set if the sampling has not been
carefully checked. An example of this is illustrated in Figure 9.
Following the standards for machine learning from
the remote sensing community, we performed our experiments using well-defined train and test splits where the
samples were extracted from significantly disjointed parts
of the image. In the case of 3D CNNs, it ensures that no
pixel from the test set will be surreptitiously introduced in
the training set. To do so, we used the train and test splits
for Indian Pines, Pavia University, and the DFC2018 as
defined by the GRSS on the DASE benchmarking website.
The ground truth is divided based on the connected components instead of the pixels, which allows for the evaluation to actually measure how the model generalizes to
new geoentities. Hyperparameters are tuned using 5% of
the training set as a separated validation set.
We used our toolbox to compare various reimplementations of the state of the art. Models were implemented as
closely as possible to the use in the original articles. It is worth
noting that, despite the our best efforts, reproducing the results exactly, using only the articles and without the original
implementations, is very difficult. Many hyperparameters
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE

JUNE 2019



IEEE Geoscience and Remote Sensing Magazine - June 2019

Table of Contents for the Digital Edition of IEEE Geoscience and Remote Sensing Magazine - June 2019

Contents
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover1
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover2
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Contents
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 2
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 3
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 4
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 5
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 6
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 7
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 8
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 9
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 10
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 11
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 12
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 13
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 14
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 15
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 16
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 17
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 18
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 19
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 20
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 21
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 22
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 23
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 24
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 25
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 26
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 27
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 28
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 29
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 30
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 31
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 32
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 33
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 34
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 35
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 36
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 37
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 38
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 39
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 40
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 41
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 42
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 43
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 44
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 45
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 46
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 47
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 48
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 49
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 50
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 51
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 52
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 53
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 54
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 55
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 56
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 57
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 58
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 59
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 60
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 61
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 62
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 63
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 64
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 65
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 66
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 67
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 68
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 69
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 70
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 71
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 72
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 73
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 74
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 75
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 76
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 77
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 78
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 79
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 80
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 81
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 82
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 83
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 84
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 85
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 86
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 87
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 88
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 89
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 90
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 91
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 92
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 93
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 94
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 95
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 96
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 97
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 98
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 99
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 100
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 101
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 102
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 103
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 104
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 105
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 106
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 107
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 108
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 109
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 110
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 111
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 112
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 113
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 114
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 115
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 116
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 117
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 118
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 119
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 120
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 121
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 122
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 123
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 124
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 125
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 126
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 127
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 128
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 129
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 130
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 131
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 132
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 133
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 134
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 135
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 136
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 137
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 138
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 139
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 140
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 141
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 142
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 143
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 144
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 145
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 146
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 147
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 148
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 149
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 150
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 151
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 152
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 153
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 154
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 155
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 156
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 157
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 158
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 159
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 160
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 161
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 162
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 163
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 164
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 165
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 166
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 167
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 168
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 169
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 170
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 171
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 172
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 173
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 174
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 175
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 176
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 177
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 178
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 179
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 180
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 181
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 182
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 183
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 184
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 185
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 186
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 187
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 188
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 189
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 190
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 191
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 192
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover3
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2013
https://www.nxtbookmedia.com