IEEE Geoscience and Remote Sensing Magazine - June 2019 - 24
each image pixel. Like most empirical methods, ELM does
not require absolute radiometric calibration, but it does require further adjustments if the atmospheric and illumination conditions are not stationary within the scene [150].
Whereas empirical methods are widely applied in operational scenarios [151], over the years researchers have put
their efforts toward "forever improving the physical model"
[152] to provide increasingly more accurate radiative-transfer-modeling-based AC techniques. The AC approaches
belonging to this category are based on an analytic model
for the radiation transfer in the atmosphere, such as that
explored in the "Environmentally Induced Target Variability" section, and, thus, need to estimate the various model
parameters and then invert the model to retrieve the surface reflectance. Model parameter estimation is generally
accomplished by resorting to radiative-transfer codes, such
as MODTRAN [54] or 5S [153], or exploiting the imaged radiance in certain bands to estimate visibility, spatially variable parameters (e.g., WV and aerosols), and adjacency effects. One of the first AC techniques led to the atmospheric
removal program (ATREM) [145], which did not explicitly
account for adjacency effects. This was instead incorporated
in the approach of fast line-of-sight atmospheric analysis of
spectral hypercubes (FLAASH) [154], which is a very popular commercial AC software package. More recently, the atmospheric and topographic correction algorithm (ATCOR)
[147] has been developed, which also features a correction
for topographic effects (provided that a digital elevation
map of the scene is available).
SHADOW AND CLOUD REMOVAL
Shadows and clouds are among the most nonstationary
sources of variability in hyperspectral imagery, in both
space and time. Whereas the effects of clouds are mostly
significant for high-altitude acquisitions (e.g., from spaceborne sensors), the impacts of shadows are stronger
for high spatial resolution imagery, especially in the urban environment.
Approaches to shadow removal are typically based on
specific transformations that are applied to the imaged
data [155], [32]. For instance, a transformation from Cartesian to hyperspherical coordinates allows the data to be
separated into d - 1 angular components related to spectral information content and one radial component whose
magnitude represents the overall brightness level [32]. By
segmenting the image and identifying those clusters with
the lowest magnitude of the radial component, a shadow
mask can be obtained [32]. Another approach to remove
shadows is to exploit ancillary data, such as lidar 3D point
clouds [44], [135].
Detection of clouds is essentially based on finding
pixels in which the cloud optical depth is greater than a
specific threshold [136] or evaluating a combination of
threshold tests [156]. This enables generation of a cloud
mask. When possible, the radiative effects (e.g., changes
in illumination, shadows, temperature variations, spatial
24
structure, and enhanced adjacency effects) of cloud layers
are corrected [136].
SPECTRAL REFLECTANCE DECOMPOSITION WITH
MULTIPLE GAUSSIAN CURVES
A physics-inspired spectral characterization for material
reflectance spectra was presented by Lanker et al. [137],
with the aim of suppressing variability due primarily to
material morphology and composition. Inspiration was
drawn from the Lorentz oscillator model applied to the
material dielectric function (i.e., how, as a function of
wavelength, the optical index of refraction varies). Each
Lorenz oscillator, roughly speaking, corresponds to a spectral "line" (although for solid materials, unlike gases, individual lines can be very broad); thus, a model of material
spectral reflectance with multiple Lorentz oscillators identifies multiple lines in a spectrum. In [137], the authors
chose to fit the curve of reflection versus wavelength using
Gaussian line shapes-this was found to be simpler and
less computationally intense than fitting the complex dielectric function with Lorentz oscillators. This is similar
to the curve-fitting approaches performed in mineral spectroscopy [157].
It was experimentally found that, although the Gaussian amplitudes were subject to considerable variations
upon varying atmospheric, illumination, and viewing
conditions as well as material morphology and composition, the locations and widths of the Gaussian functions
were much less affected [137], [138]. These findings suggest that alternative profiles based on the locations and
widths of the Gaussian functions used to fit the spectra
could be adopted for robust characterization of target
material spectra and potentially for background spectral
variability as well.
IN-SCENE TARGET SIGNATURE CHARACTERIZATION
In some circumstances, the problem of target variability
can be bypassed by directly estimating from the image the
most discriminative target spectral signature for a given
scenario and material by means of a multiple-instance machine-learning approach [158]. This can be accomplished
when at least imprecisely labeled training samples are available-for instance, when GPS coordinates for the targets
are known and general regions of pixels containing the targets can be identified. (GPS precision is generally limited by
the coregistration accuracy; thus, pixel-level ground truthing is hardly ever achieved.) Using a simple iterative algorithm with a closed-form solution for the update rule, the
multiple-instance learning approach is capable of retrieving the target signature that maximizes the cosine spectral
similarity (more robust in the case of mixed training data)
between the estimated signature and the positive (targetincluding) instances while minimizing the similarity with
the non-target-labeled instances. As a byproduct, the estimated signature helps uncover the discriminative spectral
characteristics and features of the target class, which are
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE
JUNE 2019
IEEE Geoscience and Remote Sensing Magazine - June 2019
Table of Contents for the Digital Edition of IEEE Geoscience and Remote Sensing Magazine - June 2019
Contents
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover1
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover2
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Contents
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 2
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 3
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 4
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 5
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 6
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 7
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 8
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 9
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 10
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 11
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 12
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 13
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 14
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 15
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 16
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 17
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 18
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 19
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 20
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 21
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 22
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 23
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 24
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 25
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 26
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 27
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 28
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 29
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 30
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 31
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 32
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 33
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 34
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 35
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 36
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 37
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 38
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 39
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 40
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 41
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 42
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 43
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 44
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 45
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 46
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 47
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 48
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 49
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 50
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 51
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 52
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 53
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 54
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 55
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 56
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 57
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 58
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 59
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 60
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 61
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 62
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 63
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 64
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 65
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 66
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 67
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 68
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 69
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 70
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 71
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 72
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 73
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 74
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 75
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 76
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 77
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 78
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 79
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 80
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 81
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 82
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 83
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 84
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 85
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 86
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 87
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 88
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 89
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 90
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 91
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 92
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 93
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 94
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 95
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 96
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 97
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 98
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 99
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 100
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 101
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 102
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 103
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 104
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 105
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 106
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 107
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 108
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 109
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 110
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 111
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 112
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 113
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 114
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 115
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 116
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 117
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 118
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 119
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 120
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 121
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 122
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 123
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 124
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 125
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 126
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 127
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 128
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 129
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 130
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 131
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 132
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 133
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 134
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 135
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 136
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 137
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 138
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 139
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 140
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 141
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 142
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 143
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 144
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 145
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 146
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 147
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 148
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 149
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 150
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 151
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 152
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 153
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 154
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 155
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 156
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 157
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 158
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 159
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 160
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 161
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 162
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 163
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 164
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 165
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 166
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 167
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 168
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 169
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 170
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 171
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 172
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 173
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 174
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 175
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 176
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 177
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 178
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 179
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 180
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 181
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 182
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 183
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 184
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 185
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 186
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 187
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 188
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 189
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 190
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 191
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 192
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover3
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2013
https://www.nxtbookmedia.com