IEEE Geoscience and Remote Sensing Magazine - June 2019 - 62
formed under different conditions than the assemblages
found in the altered granitic wall rock. The two disparate
formations may represent different alteration zones that
resulted from two distinct hydrothermal alteration episodes, where the less-ordered Al-poor illite-muscovite and
kaolinite formed first by pervasive alteration of the wall
rock and, in a later episode under higher-temperature conditions, the quartz veins formed. Alternatively, the two
different assemblages may have resulted from disparate
physicochemical conditions between the fluid conduits
and the less permeable wall rock during the same hydrothermal event.
The strength of the Wavelength Mapper, as shown in
this study, is the provision of a synoptic view of the compositional information together with the microstructural
information in one color image. The linkage enables the
interpretation of the compositional variation in relation to
the spatial patterns present in the fabric of the rock. The
method's capability of visualizing small shifts in wavelength positions related to changes in mineral chemistry is
another useful feature of the technique.
A limitation of the Wavelength Mapper as used here
is that it shows only the position and depth of single features and does not take into account the shape of the feature and the occurrence of other absorption features at
other wavelength positions. This makes it impossible to
differentiate among minerals with overlapping deepest
features, such as illite-muscovite, kaolinite, and tourmaline, from the wavelength map alone. To discriminate among these minerals, the wavelength positions
of the second-deepest features could be used because
they differ for these three minerals (Table 3). Minerals with shallow absorption features are not visible in
the wavelength map because of the default stretching
interval of the depth image of the absorption feature.
This results in low intensity levels of pixels that contain
shallow features in the wavelength map. A different
choice of the stretching interval for the creation of the
wavelength map, where the shallow features display in
higher brightness levels, will solve this problem.
We conclude that the Wavelength Mapper combines key
compositional and microstructural rock information in a
single color image, which enables a first assessment of the
mineral diversity and rock-forming processes that created
the different minerals and assemblages in a specimen. The
construction and interpretation of the wavelength map is a
first step in the interpretation workflow of a hyperspectral image. The results can be further used as the selection
of image endmember spectra for input into a classification
procedure and to obtain a mineral map.
APPLICATION TO AIRBORNE HYPERSPECTRAL DATA
In this case study, we apply IDL DISPEC and the Wavelength Mapper to highlight mineral alteration patterns in
airborne AVIRIS-NG data over Cuprite, Nevada. Cuprite
has a long tradition of spectral investigations (e.g., [53]-
[57]). Cuprite is particularly useful for testing hyperspectral airborne sensors and algorithms because of the area's
diverse alteration mineralogy, limited vegetation cover,
and excellent outcrop situation. From the literature (e.g.,
[57]), it is known that the area contains various iron-,
Al-OH-, and iron/Mg-OH-bearing minerals that show different spectral positions in their respective absorption feature wavelengths, depending on mineralogy and mineral
chemistry, respectively. We will use IDL DISPEC to check
at which wavelength we can expect the spectral features
and will employ the Wavelength Mapper to highlight the
mineralogy and mineral chemistry spatial patterns in the
airborne data.
Relative Frequency (per Bin)
STUDY AREA
Cuprite is in south-central Nevada, roughly 200 km northwest of Las Vegas. The Cuprite study
area contains advanced argillic alteration in a western and an east0.06
ern center (Figure 11), which are
separated by U.S. Highway 95 and
a 2-km-wide pediment of Quater0.04
nary age. The exposed lithologies in
the western center consist mainly of
0.02
Cambrian metasediments and Tertiary conglomerates, while the east0
ern center is composed mostly of
0
5
10
15
20
25
Tertiary ash-flow and air-fall tuffs.
Crystallinity Value
A late Miocene hydrothermal altera(b)
(a)
tion caused pervasive alteration on
both sides of the highway to mineral
zones of advanced argillic hydrated
FIGURE 10. (a) A crystallinity map (i.e., Depth2,200/Depth1,900) showing the ordering of
silica and alunite, as well as to argilillite-muscovite minerals in gray scale and linear stretch. Low values are in dark tones, and
lic kaolinite and white mica. Addihigh values bright. The image was calculated by dividing the depth of the Al-OH feature near
tionally, there is propylitic chlorite
2,200 nm by the depth of the water feature near 1,900 nm. (b) A histogram of the crystallinin the western center and a relict of
ity values in (a).
62
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE
JUNE 2019
IEEE Geoscience and Remote Sensing Magazine - June 2019
Table of Contents for the Digital Edition of IEEE Geoscience and Remote Sensing Magazine - June 2019
Contents
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover1
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover2
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Contents
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 2
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 3
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 4
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 5
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 6
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 7
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 8
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 9
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 10
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 11
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 12
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 13
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 14
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 15
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 16
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 17
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 18
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 19
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 20
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 21
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 22
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 23
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 24
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 25
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 26
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 27
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 28
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 29
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 30
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 31
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 32
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 33
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 34
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 35
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 36
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 37
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 38
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 39
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 40
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 41
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 42
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 43
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 44
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 45
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 46
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 47
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 48
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 49
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 50
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 51
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 52
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 53
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 54
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 55
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 56
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 57
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 58
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 59
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 60
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 61
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 62
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 63
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 64
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 65
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 66
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 67
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 68
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 69
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 70
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 71
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 72
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 73
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 74
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 75
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 76
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 77
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 78
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 79
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 80
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 81
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 82
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 83
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 84
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 85
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 86
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 87
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 88
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 89
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 90
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 91
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 92
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 93
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 94
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 95
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 96
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 97
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 98
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 99
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 100
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 101
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 102
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 103
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 104
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 105
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 106
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 107
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 108
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 109
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 110
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 111
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 112
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 113
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 114
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 115
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 116
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 117
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 118
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 119
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 120
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 121
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 122
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 123
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 124
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 125
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 126
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 127
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 128
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 129
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 130
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 131
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 132
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 133
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 134
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 135
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 136
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 137
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 138
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 139
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 140
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 141
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 142
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 143
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 144
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 145
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 146
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 147
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 148
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 149
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 150
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 151
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 152
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 153
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 154
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 155
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 156
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 157
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 158
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 159
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 160
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 161
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 162
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 163
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 164
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 165
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 166
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 167
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 168
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 169
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 170
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 171
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 172
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 173
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 174
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 175
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 176
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 177
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 178
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 179
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 180
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 181
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 182
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 183
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 184
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 185
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 186
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 187
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 188
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 189
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 190
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 191
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 192
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover3
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2013
https://www.nxtbookmedia.com