IEEE Geoscience and Remote Sensing Magazine - June 2019 - 91
making them harder to distinguish from one another. For
these reasons, accurately estimating moisture content,
particle size, or other properties of the underlying materials
requires very accurate emissivity retrieval. As discussed in
the "Emissivity Retrieval" section, uncertainty in the atmospheric parameters and the difficulty associated with TES
make the parameter estimation procedure very challenging for remote sensing applications. In the presence of significant sensor noise, offsets, or shape errors, the retrieved
emissivities may vary significantly from their true values,
further complicating the parameter estimation problem
[70]. These factors and others have made SMA a popular
technique for mapping pure, spectrally distinct minerals in
LWIR hyperspectral data [2], [71].
The combined effects of variations in a material's physical properties, sensor noise, and offsets, as well as uncertainty in atmospheric parameters, lead to the inherent variation observed in LWIR hyperspectral data. Modeling these
natural variations is a key step in understanding the effectiveness of detection, classification, or other processing algorithms. One approach to modeling natural backgrounds
is to treat the scene as a mixture of elliptical distributions.
Each distinct background class is modeled by a single elliptical distribution, but the whole background is a complex
combination of the individual distributions. This approach
has been applied to reflectance target detection in the
VNIR/SWIR and is being investigated for emissivity-based
detection [53], [72]. Compared to reflectance modeling, the
LWIR regime presents a unique difficulty for temperature
modeling. Material temperature, a highly scene-dependent
quantity that is not readily modeled, is a critical component
for algorithm performance estimation.
SCENE CLASSIFICATION
Classification tasks in the LWIR have been focused on mineral and vegetation mapping. Mineral mapping is a popular application for several reasons including the distinct
spectral features that many minerals have, the availability
of ground measurements, and the large areas that minerals cover [4], [58]. Vegetation mapping, identification, and
monitoring is another area of interest, although vegetation
typically lacks the large spectral features seen in many mineral species [73]. The lack of large spectral features makes
remote differentiation of plants extremely difficult in the
LWIR. However, it makes vegetation a good candidate for
blackbody pixels in ISAC algorithms and means that temperature estimates can be very accurate for vegetation.
Because of the relative simplicity of SMA, these techniques are the most popular ways that scenes are broken
into different material classes, especially in mineral mapping applications. Examples include endmember analysis
followed by a spectral angle mapper [74], mapping alluvial
deposits [75], and estimating mineral particle size [54]. A
summary of geologic mapping using HSI is provided in
[76]. Despite the popularity of SMA techniques for mineral
mapping, for general scene classification problems, several
JUNE 2019
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE
machine-learning techniques have been applied to both
VNIR/SWIR and, to a lesser extent, LWIR hyperspectral
data. A review of classification techniques can be found
in [77]. Table 3 presents several classification techniques
and associated references where the technique was applied
to HSI.
In contrast to algorithms relying on library spectra, the
training and testing of machine-learning algorithms are
completed using in-scene spectra. An example of the training and testing of classifiers applied to HSI is discussed in
[84]. The training and testing phases, along with some difficulties involved, can be summarized as follows.
1) Training: Training a classifier requires a large number
of labeled pixels for each material. Thus, these types
of methods are not appropriate for target-detection
applications where there are only a few samples of the
target. When classifying background materials, each
training pixel or spectrum must be labeled. Creating
labeled imagery is very time intensive and subject to
human error.
2) Testing: After a classifier has been trained, evaluation and
comparison of classifiers are very difficult. To evaluate
a classifier, a testing data set is constructed from the labeled data. The classifier is run on the test data set, and
the results are compared to the true labels for that data.
In general, it is unclear how the resulting algorithm will
generalize to new scenes, areas, times of year, weather, and
sensors [85].
Other practical problems include the large amounts
of data for modest collection areas, the large number of
spectral bands causing techniques to fail [82], and a lack
of data sets with ground truthing [77]. The first two problems are usually solved by compressing the data in some
way, but this may remove valuable information needed to
separate different materials. The third problem is not easily
addressed because of the difficulty in creating high-quality ground truth, which usually involves setting up wellcharacterized reference articles, taking a variety of atmospheric measurements, and measuring specific materials
on the ground. The recent availability of LWIR data taken
by the HyTES instrument should expose a larger audience
TABLE 3. THE CLASSIFICATION TECHNIQUES APPLIED
TO HYPERSPECTRAL IMAGERY.
TECHNIQUE
SPECTRAL REGION
REFERENCES
Matched filter
LWIR
[2], [71]
Rule-based classification
LWIR
[78]
Linear discriminant analysis
LWIR
[79]
Quadratic discriminants
LWIR
[73]
Morphological techniques
VNIR/SWIR
[80]
Support vector machine
VNIR/SWIR
[81], [82]
Neural networks
VNIR/SWIR
[83]
91
IEEE Geoscience and Remote Sensing Magazine - June 2019
Table of Contents for the Digital Edition of IEEE Geoscience and Remote Sensing Magazine - June 2019
Contents
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover1
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover2
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Contents
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 2
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 3
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 4
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 5
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 6
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 7
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 8
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 9
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 10
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 11
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 12
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 13
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 14
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 15
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 16
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 17
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 18
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 19
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 20
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 21
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 22
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 23
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 24
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 25
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 26
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 27
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 28
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 29
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 30
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 31
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 32
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 33
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 34
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 35
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 36
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 37
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 38
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 39
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 40
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 41
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 42
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 43
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 44
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 45
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 46
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 47
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 48
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 49
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 50
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 51
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 52
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 53
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 54
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 55
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 56
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 57
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 58
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 59
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 60
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 61
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 62
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 63
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 64
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 65
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 66
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 67
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 68
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 69
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 70
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 71
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 72
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 73
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 74
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 75
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 76
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 77
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 78
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 79
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 80
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 81
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 82
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 83
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 84
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 85
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 86
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 87
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 88
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 89
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 90
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 91
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 92
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 93
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 94
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 95
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 96
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 97
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 98
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 99
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 100
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 101
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 102
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 103
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 104
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 105
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 106
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 107
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 108
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 109
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 110
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 111
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 112
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 113
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 114
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 115
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 116
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 117
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 118
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 119
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 120
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 121
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 122
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 123
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 124
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 125
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 126
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 127
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 128
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 129
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 130
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 131
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 132
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 133
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 134
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 135
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 136
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 137
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 138
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 139
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 140
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 141
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 142
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 143
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 144
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 145
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 146
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 147
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 148
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 149
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 150
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 151
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 152
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 153
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 154
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 155
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 156
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 157
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 158
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 159
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 160
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 161
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 162
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 163
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 164
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 165
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 166
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 167
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 168
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 169
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 170
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 171
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 172
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 173
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 174
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 175
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 176
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 177
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 178
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 179
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 180
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 181
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 182
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 183
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 184
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 185
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 186
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 187
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 188
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 189
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 190
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 191
IEEE Geoscience and Remote Sensing Magazine - June 2019 - 192
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover3
IEEE Geoscience and Remote Sensing Magazine - June 2019 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2013
https://www.nxtbookmedia.com