IEEE Geoscience and Remote Sensing Magazine - June 2021 - 13
indicates that the phase gradient information is wrong,
making SB PU dependent on the integration path. Goldstein
et al. [10] provided the definition of residue, which
is that, if a loop-integration value of the phase gradients
from (4) of any 2 × 2 neighboring pixels is 2r, it is called
a positive residue; otherwise, if it is 2r,
it is called a negative
residue. To make SB PU independent on the integration
path, a residue-balance criterion is put forward in [4]. To
be specific, if the closed-path integral (i.e., the summation
of the enclosed residue polarity) is equal to zero, the
integration result is independent of the integration path.
Therefore, the residue theorem provides a sufficient and
necessary condition to make SB PU independent on path.
Figure 4(a) shows a wrapped phase image obtained from
a real InSAR data set, and Figure 4(b) displays the five
pairs of negative residues (indicated by red triangles) and
positive residues (designated by blue squares) identified
in Figure 4(a).
BRANCH CUT
The branch-cut technique is a powerful method with
the potential to provide the PU result by employing the
residue-balance criteria [10]. The main idea of the branchcut
technique is to balance the residues by deploying the
branch cut for finding the most likely reasonable integration
path to avoid the gradient error of (4). Many PU
theorems and methods operate under this principle, such
as envelope-sparsity theorems [5], [11] and Goldstein's
branch-cut algorithm [10]. Therefore, the SB PU problem
can be considered the branch-cut deployment problem.
The thorny part of the aforementioned framework is that
there are usually multiple ways to balance the residues in
practice, but InSAR cannot provide us with enough information
to guarantee which way is optimal, so the branchcut
method is also referred to as the ghost line [9].
For example, Figure 4(c)-(e) shows the different
branch-cut distributions of Figure 4(b) that were obtained
using the branch-cut algorithm [10], minimum
cost-flow (MCF) [12], and minimum spanning-tree (MST)
[13] methods, respectively. It can be observed that the
best ways for balancing the residues are multiple and
highly depend on the computing theory used by PU researchers.
Worse, sometimes, even if we know the most
desired way to balance the residues, the foundation of
computing theory still does not allow us to effectively
implement our idea, as many proposed branch-cut deployment
strategies are NP-hard, meaning that an exact
solution cannot be obtained by any method in polynomial
time unless the P-problem set is equal to the NPproblem
set [4].
In recent decades, AI-based methods have been introduced
to the field of SB PU. The SB PU method based on AI
can be roughly divided into the following two categories:
path-following PU using AI and global PU using AI, which
have totally different PU mechanisms and strategies. In the
following sections, each category is reviewed in detail.
JUNE 2021 IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE
AI-BASED PATH FOLLOWING
The AI-based path-following technique treats SB PU as
a local integration problem and has shown very promising
results in many works. Based on two elements of the
mature concepts for the path-following PU process (i.e.,
residue and branch cut), path-following AI-based PU
methods can be divided into two main groups: residue
estimation of AI and branch cut of AI. In the following
discussion, two groups of path-following methods of AI
are introduced in detail.
RESIDUE ESTIMATION FROM AI
As described previously, residue estimation relies mainly
on the Itoh condition-which is based on the PU researchers'
practical experience-in the traditional framework. In
recent years, several studies have suggested that, in some
fields (e.g., computer vision, natural language processing,
and so on), AI techniques demonstrate capability superior
to that of humans in terms of accumulating experiences
from different learning cases [14]. Accordingly, instead of
the Itoh condition, some researchers have already utilized
AI technology to calculate phase gradients. To the best of
our knowledge, the first such attempt was proposed in
-2
2
(a)
(b)
(c)
(d)
(e)
FIGURE 4. (a) A real interferogram. (b) The residue distribution
of (a) where red triangles represent negative residues and blue
squares represent positive residues. (c) The branch cuts generated
by the branch-cut algorithm. (d) The branch cuts generated by
MCF. (e) The branch cuts generated by MST.
13
IEEE Geoscience and Remote Sensing Magazine - June 2021
Table of Contents for the Digital Edition of IEEE Geoscience and Remote Sensing Magazine - June 2021
Contents
IEEE Geoscience and Remote Sensing Magazine - June 2021 - Cover1
IEEE Geoscience and Remote Sensing Magazine - June 2021 - Cover2
IEEE Geoscience and Remote Sensing Magazine - June 2021 - Contents
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 2
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 3
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 4
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 5
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 6
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 7
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 8
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 9
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 10
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 11
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 12
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 13
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 14
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 15
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 16
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 17
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 18
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 19
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 20
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 21
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 22
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 23
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 24
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 25
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 26
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 27
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 28
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 29
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 30
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 31
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 32
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 33
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 34
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 35
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 36
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 37
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 38
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 39
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 40
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 41
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 42
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 43
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 44
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 45
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 46
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 47
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 48
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 49
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 50
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 51
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 52
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 53
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 54
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 55
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 56
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 57
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 58
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 59
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 60
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 61
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 62
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 63
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 64
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 65
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 66
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 67
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 68
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 69
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 70
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 71
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 72
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 73
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 74
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 75
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 76
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 77
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 78
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 79
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 80
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 81
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 82
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 83
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 84
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 85
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 86
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 87
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 88
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 89
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 90
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 91
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 92
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 93
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 94
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 95
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 96
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 97
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 98
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 99
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 100
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 101
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 102
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 103
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 104
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 105
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 106
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 107
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 108
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 109
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 110
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 111
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 112
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 113
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 114
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 115
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 116
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 117
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 118
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 119
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 120
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 121
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 122
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 123
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 124
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 125
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 126
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 127
IEEE Geoscience and Remote Sensing Magazine - June 2021 - 128
IEEE Geoscience and Remote Sensing Magazine - June 2021 - Cover3
IEEE Geoscience and Remote Sensing Magazine - June 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2013
https://www.nxtbookmedia.com