IEEE Geoscience and Remote Sensing Magazine - March 2013 - 62

Organization profiles
Dr. Gary Jedlovec,
NASA/Marshall Space Flight Center, Alabama, USA
SPoRT Project Lead

Transitioning Research Satellite Data
to the Operational Weather Community:
The SPoRT Paradigm
1. Introduction
stablished in 2002 to demonstrate the weather forecasting application of real-time Earth Observing
System (EOS) measurements, the Short-term Prediction
Research and Transition (SPoRT) (http://weather.msfc.
nasa.gov/sport) project (managed by the NASA/Marshall
Space Flight Center Earth Science Office located at the
National Space Science and Technology Center, NSSTC,
in Huntsville, Alabama) has grown to be an end-to-end
research to operations activity focused on the use of
advanced modeling and data assimilation techniques,
nowcasting tools, and unique high-resolution multispectral data from NASA, NOAA, DoD and international
partner satellites to improve short-term weather forecasts
on a regional and local scale. SPoRT partners with several
universities and other government agencies for access to
real-time data, and works collaboratively with them to
develop new products, tools, and forecast methods, and
infuses these capabilities into the operational weather
environment. While the majority of the SPoRT end users
are forecasters at various at NWS Weather Forecast Offices
(WFOs) across the United States, the adaptation and use
of SPoRT products in NOAA Testbeds (Ralph et al., 2013),
at NOAA National Centers and Proving Grounds (Goodman et al. 2012), and for weather disaster applications
(Molthan et al. 2011; Molthan and Jedlovec, 2013) shows
the relevance of SPoRT's activities to a broader segment of
the weather community. In this way, SPoRT is focal point
and facilitator for the transfer of NASA and NOAA Earth
science technologies to the operational weather community with an emphasis on short-term forecasting.

E

2. SPoRT Paradigm
The transition of research and experimental data to
the operational weather community for evaluation
Digital Object Identifier 10.1109/MGRS.2013.2244704
Date of publication: 17 April 2013

62

and use requires a committed partnership between
data providers and end users. Without such a committed partnership, new data, tools, and enhanced forecast techniques, which are "thrown" to the operational
users, "fall" to the bottom of the "valley of death" and
never get successfully implemented. The phase "valley
of death" is a metaphor for the barriers and obstacles
separating research results and operational applications. NRC (2000) and NRC (2003) indicate that successful transitions require an understanding of the
importance and risks of transition, the development of
appropriate transition plans, adequate resources for the
transitions, and continuous communication and feedback between the research and operational communities. SPoRT has developed and follows a conceptual
transition of "research to operations," or R2O, model
which involves close collaboration with the end user
and provides a "footbridge" over the valley of death, as
shown in Figure 1. Initial interactions with potential
end users usually involve a site visit to end user facilities to learn about their operational constraints and
forecast issues. The knowledge gained from such a visit
allows developers to better match a particular research
data or capability to the forecast problem. Potential
approaches or solutions are typically discussed with
end users in order to establish a baseline for collaboration. This close interaction with the end user from
the start reassures the end user that SPoRT is focused
on helping them do their job. Potential solutions are
demonstrated and refined in a "test bed" environment
which simulates operational constrains. The test bed
environment includes end user decision support systems (for the NWS these are typically AWIPS, NAWIPS,
or AWIPS II) along with the pertinent real-time data
streams. To make the transition successful, it is important that the new capabilities be integrated into the
end user decision support system so that they can be
easily used with the rest of their data and capabilities.
ieee Geoscience and remote sensing magazine

march 2013


http://www.weather.msfc http://www.nasa.gov/sport

Table of Contents for the Digital Edition of IEEE Geoscience and Remote Sensing Magazine - March 2013

IEEE Geoscience and Remote Sensing Magazine - March 2013 - Cover1
IEEE Geoscience and Remote Sensing Magazine - March 2013 - Cover2
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 1
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 2
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 3
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 4
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 5
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 6
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 7
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 8
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 9
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 10
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 11
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 12
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 13
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 14
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 15
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 16
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 17
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 18
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 19
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 20
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 21
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 22
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 23
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 24
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 25
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 26
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 27
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 28
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 29
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 30
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 31
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 32
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 33
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 34
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 35
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 36
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 37
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 38
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 39
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 40
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 41
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 42
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 43
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 44
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 45
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 46
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 47
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 48
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 49
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 50
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 51
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 52
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 53
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 54
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 55
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 56
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 57
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 58
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 59
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 60
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 61
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 62
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 63
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 64
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 65
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 66
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 67
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 68
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 69
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 70
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 71
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 72
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 73
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 74
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 75
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 76
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 77
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 78
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 79
IEEE Geoscience and Remote Sensing Magazine - March 2013 - 80
IEEE Geoscience and Remote Sensing Magazine - March 2013 - Cover3
IEEE Geoscience and Remote Sensing Magazine - March 2013 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2013
https://www.nxtbookmedia.com