IEEE Geoscience and Remote Sensing Magazine - March 2023 - 67

[94] M. Ding, X. Fu, T.-Z. Huang, J. Wang, and X.-L. Zhao, " Hyperspectral
super-resolution via interpretable block-term tensor
modeling, " IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 15, no. 3, pp. 641-656, Apr. 2021, doi: 10.1109/JSTSP.2020.3045965.
[95]
W. Jiang, H. Liu, and J. Zhang, " Hyperspectral and mutispectral
image fusion via coupled block term decomposition with
graph Laplacian regularization, " in Proc. Int. Conf. Signal Image
Process. Commun., SPIE, 2021, vol. 11848, pp. 49-55.
[96] R. Dian, S. Li, and L. Fang, " Learning a low tensor-train rank
representation for hyperspectral image super-resolution, " IEEE
Trans. Neural Netw. Learn. Syst., vol. 30, no. 9, pp. 2672-2683,
Sep. 2019, doi: 10.1109/TNNLS.2018.2885616.
[97] X. Li, Y. Yuan, and Q. Wang, " Hyperspectral and multispectral
image fusion via nonlocal low-rank tensor approximation
and sparse representation, " IEEE Trans. Geosci. Remote
Sens., vol. 59, no. 1, pp. 550-562, Jan. 2021, doi: 10.1109/
TGRS.2020.2994968.
[98] W. He, Y. Chen, N. Yokoya, C. Li, and Q. Zhao, " Hyperspectral
super-resolution via coupled tensor ring factorization, " Pattern
Recognit., vol. 122, Feb. 2022, Art. no. 108280, doi: 10.1016/j.
patcog.2021.108280.
[99] Y. Xu, Z. Wu, J. Chanussot, and Z. Wei, " Hyperspectral images
super-resolution via learning high-order coupled tensor ring representation, "
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11,
pp. 4747-4760, Nov. 2020, doi: 10.1109/TNNLS.2019.2957527.
[100] Y. Chen, J. Zeng, W. He, X.-L. Zhao, and T.-Z. Huang, " Hyperspectral
and multispectral image fusion using factor smoothed
tensor ring decomposition, " IEEE Trans. Geosci. Remote Sens., vol.
60, 2022, Art. no. 5515417, doi: 10.1109/TGRS.2021.3114197.
[101] H. Xu, M. Qin, S. Chen, Y. Zheng, and J. Zheng, " Hyperspectral-multispectral
image fusion via tensor ring and subspace
decompositions, " IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 14, pp. 8823-8837, Aug. 2021, doi: 10.1109/
JSTARS.2021.3108233.
[102] R. Dian and S. Li, " Hyperspectral image super-resolution via
subspace-based low tensor multi-rank regularization, " IEEE
Trans. Image Process., vol. 28, no. 10, pp. 5135-5146, May 2019,
doi: 10.1109/TIP.2019.2916734.
[103] J. Long, Y. Peng, J. Li, L. Zhang, and Y. Xu, " Hyperspectral image
super-resolution via subspace-based fast low tensor multirank
regularization, " Infrared Phys. Technol., vol. 116, 2021, Art.
no. 103631, doi: 10.1016/j.infrared.2021.103631.
[104] Y. Xu, Z. Wu, J. Chanussot, and Z. Wei, " Nonlocal patch tensor
sparse representation for hyperspectral image super-resolution, "
IEEE Trans. Image Process., vol. 28, no. 6, pp. 3034-3047,
Jun. 2019, doi: 10.1109/TIP.2019.2893530.
[105] J. Li, X. Liu, Q. Yuan, H. Shen, and L. Zhang, " Antinoise hyperspectral
image fusion by mining tensor low-multilinearrank
and variational properties, " IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 10, pp. 7832-7848, Oct. 2019, doi: 10.1109/
TGRS.2019.2916654.
[106] N. Liu, L. Li, W. Li, R. Tao, J. E. Fowler, and J. Chanussot, " Hyperspectral
restoration and fusion with multispectral imagery via low-rank
tensor-approximation, " IEEE Trans. Geosci. Remote Sens., vol. 59, no.
9, pp. 7817-7830, Sep. 2021, doi: 10.1109/TGRS.2020.3049014.
MARCH 2023 IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE
[107] Q. Zhang, H. Wang, R. Plemmons, and V. P. Pauca, " Spectral
unmixing using nonnegative tensor factorization, " in
Proc. Annu. Southeast Regional Conf., 2007, pp. 531-532, doi:
10.1145/1233341.1233449.
[108] Q. Zhang, H. Wang, R. J. Plemmons, and V. P. Pauca, " Tensor
methods for hyperspectral data analysis: A space object material
identification study, " J. Opt. Soc. Amer. A Opt. Image Sci.
Vis., vol. 25, no. 12, pp. 3001-3012, Dec. 2008, doi: 10.1364/
JOSAA.25.003001.
[109] T. Imbiriba, R. A. Borsoi, and J. C. M. Bermudez, " Low-rank tensor
modeling for hyperspectral unmixing accounting for spectral
variability, " IEEE Trans. Geosci. Remote Sens., vol. 58, no. 3,
pp. 1833-1842, Mar. 2020, doi: 10.1109/TGRS.2019.2949543.
[110] Y. Qian, F. Xiong, S. Zeng, J. Zhou, and Y. Y. Tang, " Matrixvector
nonnegative tensor factorization for blind unmixing of
hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 3, pp. 1776-1792, 2017, doi: 10.1109/TGRS.2016.2633279.
[111] F. Xiong, Y. Qian, J. Zhou, and Y. Y. Tang, " Hyperspectral unmixing
via total variation regularized nonnegative tensor factorization, "
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 4, pp.
2341-2357, Apr. 2019, doi: 10.1109/TGRS.2018.2872888.
[112] P. Zheng, H. Su, and Q. Du, " Sparse and low-rank constrained
tensor factorization for hyperspectral image unmixing, " IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 1754-
1767, Jan. 2021, doi: 10.1109/JSTARS.2020.3048820.
[113] B. Feng and J. Wang, " Constrained nonnegative tensor factorization
for spectral unmixing of hyperspectral images: A case
study of urban impervious surface extraction, " IEEE Geosci. Remote
Sens. Lett., vol. 16, no. 4, pp. 583-587, 2019, doi: 10.1109/
LGRS.2018.2877734.
[114] H.-C. Li, S. Liu, X.-R. Feng, and S.-Q. Zhang, " Sparsity-constrained
coupled nonnegative matrix-tensor factorization for
hyperspectral unmixing, " IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 13, pp. 5061-5073, Aug. 2020, doi: 10.1109/
JSTARS.2020.3019706.
[115] Y. Yuan, L. Dong, and X. Li, " Hyperspectral unmixing using
nonlocal similarity-regularized low-rank tensor factorization, "
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5507614,
doi: 10.1109/TGRS.2021.3095488.
[116] L. Sun and H. Guo, " Blind unmixing of hyperspectral images
based on L1 norm and tucker tensor decomposition, " IEEE
Geosci. Remote Sens. Lett., vol. 19, 2022, Art. no. 5508605, doi:
10.1109/LGRS.2021.3103962.
[117] J. Yao, D. Hong, L. Xu, D. Meng, J. Chanussot, and Z. Xu,
" Sparsity-enhanced convolutional decomposition: A novel tensor-based
paradigm for blind hyperspectral unmixing, " IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5505014, doi:
10.1109/TGRS.2021.3069845.
[118] L. Sun, F. Wu, T. Zhan, W. Liu, J. Wang, and B. Jeon, " Weighted
nonlocal low-rank tensor decomposition method for sparse
unmixing of hyperspectral images, " IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 13, pp. 1174-1188, Mar. 2020,
doi: 10.1109/JSTARS.2020.2980576.
[119] L. Gao, Z. Wang, L. Zhuang, H. Yu, B. Zhang, and J. Chanussot,
" Using low-rank representation of abundance maps and
nonnegative tensor factorization for hyperspectral nonlinear
67
http://dx.doi.org/10.1109/JSTSP.2020.3045965 http://dx.doi.org/10.1109/JSTSP.2020.3045965 http://dx.doi.org/10.1364/JOSAA.25.003001 http://dx.doi.org/10.1364/JOSAA.25.003001 http://dx.doi.org/10.1109/TGRS.2019.2949543 http://dx.doi.org/10.1109/TNNLS.2018.2885616 http://dx.doi.org/10.1109/TGRS.2020.2994968 http://dx.doi.org/10.1109/TGRS.2016.2633279 http://dx.doi.org/10.1109/TGRS.2020.2994968 http://dx.doi.org/10.1109/TGRS.2018.2872888 http://dx.doi.org/10.1016/j.patcog.2021.108280 http://dx.doi.org/10.1016/j.patcog.2021.108280 http://dx.doi.org/10.1109/JSTARS.2020.3048820 http://dx.doi.org/10.1109/TNNLS.2019.2957527 http://dx.doi.org/10.1109/LGRS.2018.2877734 http://dx.doi.org/10.1109/LGRS.2018.2877734 http://dx.doi.org/10.1109/TGRS.2021.3114197 http://dx.doi.org/10.1109/JSTARS.2021.3108233 http://dx.doi.org/10.1109/JSTARS.2020.3019706 http://dx.doi.org/10.1109/JSTARS.2020.3019706 http://dx.doi.org/10.1109/JSTARS.2021.3108233 http://dx.doi.org/10.1109/TIP.2019.2916734 http://dx.doi.org/10.1109/TGRS.2021.3095488 http://dx.doi.org/10.1016/j.infrared.2021.103631 http://dx.doi.org/10.1109/LGRS.2021.3103962 http://dx.doi.org/10.1109/TGRS.2021.3069845 http://dx.doi.org/10.1109/TGRS.2019.2916654 http://dx.doi.org/10.1109/TGRS.2019.2916654 http://dx.doi.org/10.1109/JSTARS.2020.2980576 http://dx.doi.org/10.1109/TGRS.2020.3049014

IEEE Geoscience and Remote Sensing Magazine - March 2023

Table of Contents for the Digital Edition of IEEE Geoscience and Remote Sensing Magazine - March 2023

Contents
IEEE Geoscience and Remote Sensing Magazine - March 2023 - Cover1
IEEE Geoscience and Remote Sensing Magazine - March 2023 - Cover2
IEEE Geoscience and Remote Sensing Magazine - March 2023 - Contents
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 2
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 3
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 4
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 5
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 6
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 7
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 8
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 9
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 10
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 11
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 12
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 13
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 14
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 15
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 16
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 17
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 18
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 19
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 20
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 21
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 22
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 23
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 24
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 25
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 26
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 27
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 28
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 29
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 30
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 31
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 32
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 33
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 34
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 35
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 36
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 37
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 38
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 39
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 40
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 41
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 42
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 43
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 44
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 45
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 46
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 47
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 48
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 49
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 50
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 51
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 52
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 53
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 54
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 55
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 56
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 57
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 58
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 59
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 60
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 61
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 62
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 63
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 64
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 65
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 66
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 67
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 68
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 69
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 70
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 71
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 72
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 73
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 74
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 75
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 76
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 77
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 78
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 79
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 80
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 81
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 82
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 83
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 84
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 85
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 86
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 87
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 88
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 89
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 90
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 91
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 92
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 93
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 94
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 95
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 96
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 97
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 98
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 99
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 100
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 101
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 102
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 103
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 104
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 105
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 106
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 107
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 108
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 109
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 110
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 111
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 112
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 113
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 114
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 115
IEEE Geoscience and Remote Sensing Magazine - March 2023 - 116
IEEE Geoscience and Remote Sensing Magazine - March 2023 - Cover3
IEEE Geoscience and Remote Sensing Magazine - March 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2023
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2022
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2021
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2020
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2019
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2018
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2017
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2016
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2015
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2014
https://www.nxtbook.com/nxtbooks/ieee/geoscience_december2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_september2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_june2013
https://www.nxtbook.com/nxtbooks/ieee/geoscience_march2013
https://www.nxtbookmedia.com