IEEE Microwave Magazine - September/October 2018 - 28

When Choosing Test Equipment,
Don't Forget the Interface
When purchasing RF test equipment, such as an RF switch
or a programmable attenuator, it's tempting to concentrate
on specifications such as insertion loss, frequency range or
VSWR.
But implementing a complex testing scheme usually
involves integrating multiple pieces of equipment from
multiple manufacturers.
A customer will often purchase the first piece of equipment
from their preferred vendor, complete with software, and
begin to develop their test flow. Later, they need another
component, perhaps one that vendor doesn't make. All too
often the different pieces of equipment, while working well
in isolation, are not designed to easily fit into a production
test flow that places a high priority on communication and
synchronization between modules.

PROPRIETARY VS. GENERIC INTERFACES
A typical RF test scenario can include equipment from
many different suppliers, each with their own control
software, command set, interfacing mechanics and so on.
In general, there are two approaches in driving a piece
of test equipment: deploying proprietary drivers to
each host, or using generic command sets on standard
interfaces with common protocols such as USBs HID and
CDC device class.
One potential problem with proprietary drivers is that the
manufacturer may not support your operating system,
making it difficult to use the equipment in an automated
test scenario. For example, a manufacturer may provide
drivers for Windows and Linux, but not for Mac OS or

older Windows versions such as Windows XP. A small
manufacturer may not have the time or the expertise to
develop drivers for multiple platforms. Or the market for
a platform may not be big enough to justify the expense:
they may not be major players, but platforms such as
Raspberry Pi are expanding beyond the hobbyist market
and dipping their toes into industrial applications.
In a laboratory environment, users may have a wide variety
of tests to run and simply pull equipment off the shelf
when needed. A USB device, for example, often a common
resource shared between several different computers.
In this case, each computer must contain a copy of each
driver and be kept up to date as new releases arrive, adding
to the workload of the lab manager.
Using a generic driver, the test equipment is designed
to look like a standard device class; so long as a device
adheres to the class specification, the standard installed
driver will work. Let's use USB as an example, since it's
becoming the standard for newer installations.
USB has several generic classes. The HID (human interface
device), as its name suggests, primarily covers items such
as keyboards and mice. The CDC class is intended for
modems and other communication devices. Using this
class, the test equipment simulates a modem (e.g., a virtual
COM port serial interface).
A generic USB interface solves interoperability and driver
management issues, but might violate the USB standard
or consume greater CPU resources than a proprietary
interface. A generic interface incurs no licensing fee, is
universal in application and can be readily modified.

Figure 1: Multiple devices must work seamlessly together in an automated test flow. Source: RfMW UK



Table of Contents for the Digital Edition of IEEE Microwave Magazine - September/October 2018

Contents
IEEE Microwave Magazine - September/October 2018 - Cover1
IEEE Microwave Magazine - September/October 2018 - Cover2
IEEE Microwave Magazine - September/October 2018 - 1
IEEE Microwave Magazine - September/October 2018 - 2
IEEE Microwave Magazine - September/October 2018 - Contents
IEEE Microwave Magazine - September/October 2018 - 4
IEEE Microwave Magazine - September/October 2018 - 5
IEEE Microwave Magazine - September/October 2018 - 6
IEEE Microwave Magazine - September/October 2018 - 7
IEEE Microwave Magazine - September/October 2018 - 8
IEEE Microwave Magazine - September/October 2018 - 9
IEEE Microwave Magazine - September/October 2018 - 10
IEEE Microwave Magazine - September/October 2018 - 11
IEEE Microwave Magazine - September/October 2018 - 12
IEEE Microwave Magazine - September/October 2018 - 13
IEEE Microwave Magazine - September/October 2018 - 14
IEEE Microwave Magazine - September/October 2018 - 15
IEEE Microwave Magazine - September/October 2018 - 16
IEEE Microwave Magazine - September/October 2018 - 17
IEEE Microwave Magazine - September/October 2018 - 18
IEEE Microwave Magazine - September/October 2018 - 19
IEEE Microwave Magazine - September/October 2018 - 20
IEEE Microwave Magazine - September/October 2018 - 21
IEEE Microwave Magazine - September/October 2018 - 22
IEEE Microwave Magazine - September/October 2018 - 23
IEEE Microwave Magazine - September/October 2018 - 24
IEEE Microwave Magazine - September/October 2018 - 25
IEEE Microwave Magazine - September/October 2018 - 26
IEEE Microwave Magazine - September/October 2018 - 27
IEEE Microwave Magazine - September/October 2018 - 28
IEEE Microwave Magazine - September/October 2018 - 29
IEEE Microwave Magazine - September/October 2018 - 30
IEEE Microwave Magazine - September/October 2018 - 31
IEEE Microwave Magazine - September/October 2018 - 32
IEEE Microwave Magazine - September/October 2018 - 33
IEEE Microwave Magazine - September/October 2018 - 34
IEEE Microwave Magazine - September/October 2018 - 35
IEEE Microwave Magazine - September/October 2018 - 36
IEEE Microwave Magazine - September/October 2018 - 37
IEEE Microwave Magazine - September/October 2018 - 38
IEEE Microwave Magazine - September/October 2018 - 39
IEEE Microwave Magazine - September/October 2018 - 40
IEEE Microwave Magazine - September/October 2018 - 41
IEEE Microwave Magazine - September/October 2018 - 42
IEEE Microwave Magazine - September/October 2018 - 43
IEEE Microwave Magazine - September/October 2018 - 44
IEEE Microwave Magazine - September/October 2018 - 45
IEEE Microwave Magazine - September/October 2018 - 46
IEEE Microwave Magazine - September/October 2018 - 47
IEEE Microwave Magazine - September/October 2018 - 48
IEEE Microwave Magazine - September/October 2018 - 49
IEEE Microwave Magazine - September/October 2018 - 50
IEEE Microwave Magazine - September/October 2018 - 51
IEEE Microwave Magazine - September/October 2018 - 52
IEEE Microwave Magazine - September/October 2018 - 53
IEEE Microwave Magazine - September/October 2018 - 54
IEEE Microwave Magazine - September/October 2018 - 55
IEEE Microwave Magazine - September/October 2018 - 56
IEEE Microwave Magazine - September/October 2018 - 57
IEEE Microwave Magazine - September/October 2018 - 58
IEEE Microwave Magazine - September/October 2018 - 59
IEEE Microwave Magazine - September/October 2018 - 60
IEEE Microwave Magazine - September/October 2018 - 61
IEEE Microwave Magazine - September/October 2018 - 62
IEEE Microwave Magazine - September/October 2018 - 63
IEEE Microwave Magazine - September/October 2018 - 64
IEEE Microwave Magazine - September/October 2018 - 65
IEEE Microwave Magazine - September/October 2018 - 66
IEEE Microwave Magazine - September/October 2018 - 67
IEEE Microwave Magazine - September/October 2018 - 68
IEEE Microwave Magazine - September/October 2018 - 69
IEEE Microwave Magazine - September/October 2018 - 70
IEEE Microwave Magazine - September/October 2018 - 71
IEEE Microwave Magazine - September/October 2018 - 72
IEEE Microwave Magazine - September/October 2018 - 73
IEEE Microwave Magazine - September/October 2018 - 74
IEEE Microwave Magazine - September/October 2018 - 75
IEEE Microwave Magazine - September/October 2018 - 76
IEEE Microwave Magazine - September/October 2018 - 77
IEEE Microwave Magazine - September/October 2018 - 78
IEEE Microwave Magazine - September/October 2018 - 79
IEEE Microwave Magazine - September/October 2018 - 80
IEEE Microwave Magazine - September/October 2018 - 81
IEEE Microwave Magazine - September/October 2018 - 82
IEEE Microwave Magazine - September/October 2018 - 83
IEEE Microwave Magazine - September/October 2018 - 84
IEEE Microwave Magazine - September/October 2018 - 85
IEEE Microwave Magazine - September/October 2018 - 86
IEEE Microwave Magazine - September/October 2018 - 87
IEEE Microwave Magazine - September/October 2018 - 88
IEEE Microwave Magazine - September/October 2018 - 89
IEEE Microwave Magazine - September/October 2018 - 90
IEEE Microwave Magazine - September/October 2018 - 91
IEEE Microwave Magazine - September/October 2018 - 92
IEEE Microwave Magazine - September/October 2018 - 93
IEEE Microwave Magazine - September/October 2018 - 94
IEEE Microwave Magazine - September/October 2018 - 95
IEEE Microwave Magazine - September/October 2018 - 96
IEEE Microwave Magazine - September/October 2018 - 97
IEEE Microwave Magazine - September/October 2018 - 98
IEEE Microwave Magazine - September/October 2018 - 99
IEEE Microwave Magazine - September/October 2018 - 100
IEEE Microwave Magazine - September/October 2018 - 101
IEEE Microwave Magazine - September/October 2018 - 102
IEEE Microwave Magazine - September/October 2018 - 103
IEEE Microwave Magazine - September/October 2018 - 104
IEEE Microwave Magazine - September/October 2018 - 105
IEEE Microwave Magazine - September/October 2018 - 106
IEEE Microwave Magazine - September/October 2018 - 107
IEEE Microwave Magazine - September/October 2018 - 108
IEEE Microwave Magazine - September/October 2018 - 109
IEEE Microwave Magazine - September/October 2018 - 110
IEEE Microwave Magazine - September/October 2018 - 111
IEEE Microwave Magazine - September/October 2018 - 112
IEEE Microwave Magazine - September/October 2018 - 113
IEEE Microwave Magazine - September/October 2018 - 114
IEEE Microwave Magazine - September/October 2018 - 115
IEEE Microwave Magazine - September/October 2018 - 116
IEEE Microwave Magazine - September/October 2018 - 117
IEEE Microwave Magazine - September/October 2018 - 118
IEEE Microwave Magazine - September/October 2018 - 119
IEEE Microwave Magazine - September/October 2018 - 120
IEEE Microwave Magazine - September/October 2018 - 121
IEEE Microwave Magazine - September/October 2018 - 122
IEEE Microwave Magazine - September/October 2018 - 123
IEEE Microwave Magazine - September/October 2018 - 124
IEEE Microwave Magazine - September/October 2018 - 125
IEEE Microwave Magazine - September/October 2018 - 126
IEEE Microwave Magazine - September/October 2018 - 127
IEEE Microwave Magazine - September/October 2018 - 128
IEEE Microwave Magazine - September/October 2018 - 129
IEEE Microwave Magazine - September/October 2018 - 130
IEEE Microwave Magazine - September/October 2018 - 131
IEEE Microwave Magazine - September/October 2018 - 132
IEEE Microwave Magazine - September/October 2018 - 133
IEEE Microwave Magazine - September/October 2018 - 134
IEEE Microwave Magazine - September/October 2018 - 135
IEEE Microwave Magazine - September/October 2018 - 136
IEEE Microwave Magazine - September/October 2018 - 137
IEEE Microwave Magazine - September/October 2018 - 138
IEEE Microwave Magazine - September/October 2018 - 139
IEEE Microwave Magazine - September/October 2018 - 140
IEEE Microwave Magazine - September/October 2018 - Cover3
IEEE Microwave Magazine - September/October 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/microwave_201903
https://www.nxtbook.com/nxtbooks/ieee/microwave_201902
https://www.nxtbook.com/nxtbooks/ieee/microwave_201901
https://www.nxtbook.com/nxtbooks/ieee/microwave_20181112
https://www.nxtbook.com/nxtbooks/ieee/microwave_20180910
https://www.nxtbook.com/nxtbooks/ieee/microwave_20180708
https://www.nxtbook.com/nxtbooks/ieee/microwave_201806
https://www.nxtbook.com/nxtbooks/ieee/microwave_201805
https://www.nxtbook.com/nxtbooks/ieee/microwave_201803
https://www.nxtbook.com/nxtbooks/ieee/microwave_january2018
https://www.nxtbook.com/nxtbooks/ieee/microwave_november2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_september2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_july2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_june2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_may2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_march2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_january2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_december2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_november2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_october2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_september2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_august2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_july2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_june2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_may2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_april2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_march2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_february2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_january2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_december2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_november2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_october2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_september2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_august2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_july2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_june2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_may2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_april2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_march2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_january2015
https://www.nxtbookmedia.com