IEEE Microwave Magazine - June 2015 - 31
Dk = 1
- sum of all loops that do not touch path k
+ sum of all products of two nontouching
loops that do not touch path k
- sum of all products of three nontouching
loops that do not touch path k
...
With this rule, we can obtain the transmission coefficients t LG from the generator to load L = Gt LG and
t DG from generator to detector D = Gt DG . Looking
for the loops yields CG S 11, S 22 CL, S 33 CD, S 21 CL S 12 CG,
S 31 C D S 13 C G, and so on. We are looking to find the
relationship between the signal at the load L and the
signal at the detector D, which is kept constant by the
leveling loop
t
L = Gt LG = D LG .
t DG
To achieve this steady amplitude, part
of the signal from a sweep frequency
generator is detected with a detector
diode or a power sensor.
direct one, and S 21 CL S 32, the reflection at the DUT. Bear
in mind that the matching of the DUT is unknown and
the value of CL can be considerable, which is why the
effective source match is so important. The search for
nontouching loops produces S 22 CL for the first path
and no loop for the second path
t DG =
(2)
S 31 (1 - S 22 C L) + S 21 C L S 32
.
D
(4)
With these expressions, (2) yields
Because we are interested only in the ratio t LG /t DG,
and both of these quantities are inversely proportional
to D (1), we need not evaluate D. To find the transmission coefficients, we inspect the signal flow graph
(Figure 3). Looking for transmission paths from the
generator (port 1) to the load (port 2) reveals the direct
path S 21 and a path via the reflection at the detector
diode S 31 C D S 23 . The only loop that does not touch
S 21 is S 33 CD . The path S 31 CD S 23 touches all loops, and
thus, the transmission coefficient is
S 21 (1 - S 33 CD) + S 31 CD S 23
t LG =
.
D
L =D
(3)
Port 3
Port 1 S31
G
CG
S11
CD
S33
S13
S23
S32
S21
S22
S12
Power Leveling
Goal: C eff = S 22 - S 21 S 32 = 0.
S 31
(5)
The last step in obtaining the effective source match
Ceff compares this expression with the expression for
D
As shown in Figure 4, there are also two paths from
the generator (port 1) to the detector (port 3): S 31, the
A mismatch at port 2 repairs the corrupted leveling, as shown in Figure S1. The lack of isolation
of the coupling structure used in a leveling loop
compromises the power leveling but can be compensated by an intentionally introduced reflection
coefficient
S 21 (1 - S C ) + S C
33 D
23 D
S 31
.
1 - C L (S 22 - S 21 S 32 )
S 31
Port 2
L
CL
Figure 4. The signal flow graph for determining t DG .
The direct path S 31 from the generator to the detector
is shown in green, the loop S 22 CL not touching S 31
is shown in blue, and the path S 21 CL S 32 via the load
is shown in red. Note that the value of CL can be
considerably large.
Gconst.
TX
L
Leveling Loop
Input
1
Power Divider/Splitter
3
S31
Detector
S32
2
Output
S21
Ceff
CL
Ceff
Figure S1. C eff represents both S22 and the effect
of the corrupted leveling via S32.
June 2015
Figure 5. The signal flow graph of a two-port device
attached to a load with a reflection coefficient of CL . TX
denotes the transmission coefficient, and Ceff denotes the
reflection coefficient at the output of the two-port device.
31
Table of Contents for the Digital Edition of IEEE Microwave Magazine - June 2015
IEEE Microwave Magazine - June 2015 - Cover1
IEEE Microwave Magazine - June 2015 - Cover2
IEEE Microwave Magazine - June 2015 - 1
IEEE Microwave Magazine - June 2015 - 2
IEEE Microwave Magazine - June 2015 - 3
IEEE Microwave Magazine - June 2015 - 4
IEEE Microwave Magazine - June 2015 - 5
IEEE Microwave Magazine - June 2015 - 6
IEEE Microwave Magazine - June 2015 - 7
IEEE Microwave Magazine - June 2015 - 8
IEEE Microwave Magazine - June 2015 - 9
IEEE Microwave Magazine - June 2015 - 10
IEEE Microwave Magazine - June 2015 - 11
IEEE Microwave Magazine - June 2015 - 12
IEEE Microwave Magazine - June 2015 - 13
IEEE Microwave Magazine - June 2015 - 14
IEEE Microwave Magazine - June 2015 - 15
IEEE Microwave Magazine - June 2015 - 16
IEEE Microwave Magazine - June 2015 - 17
IEEE Microwave Magazine - June 2015 - 18
IEEE Microwave Magazine - June 2015 - 19
IEEE Microwave Magazine - June 2015 - 20
IEEE Microwave Magazine - June 2015 - 21
IEEE Microwave Magazine - June 2015 - 22
IEEE Microwave Magazine - June 2015 - 23
IEEE Microwave Magazine - June 2015 - 24
IEEE Microwave Magazine - June 2015 - 25
IEEE Microwave Magazine - June 2015 - 26
IEEE Microwave Magazine - June 2015 - 27
IEEE Microwave Magazine - June 2015 - 28
IEEE Microwave Magazine - June 2015 - 29
IEEE Microwave Magazine - June 2015 - 30
IEEE Microwave Magazine - June 2015 - 31
IEEE Microwave Magazine - June 2015 - 32
IEEE Microwave Magazine - June 2015 - 33
IEEE Microwave Magazine - June 2015 - 34
IEEE Microwave Magazine - June 2015 - 35
IEEE Microwave Magazine - June 2015 - 36
IEEE Microwave Magazine - June 2015 - 37
IEEE Microwave Magazine - June 2015 - 38
IEEE Microwave Magazine - June 2015 - 39
IEEE Microwave Magazine - June 2015 - 40
IEEE Microwave Magazine - June 2015 - 41
IEEE Microwave Magazine - June 2015 - 42
IEEE Microwave Magazine - June 2015 - 43
IEEE Microwave Magazine - June 2015 - 44
IEEE Microwave Magazine - June 2015 - 45
IEEE Microwave Magazine - June 2015 - 46
IEEE Microwave Magazine - June 2015 - 47
IEEE Microwave Magazine - June 2015 - 48
IEEE Microwave Magazine - June 2015 - 49
IEEE Microwave Magazine - June 2015 - 50
IEEE Microwave Magazine - June 2015 - 51
IEEE Microwave Magazine - June 2015 - 52
IEEE Microwave Magazine - June 2015 - 53
IEEE Microwave Magazine - June 2015 - 54
IEEE Microwave Magazine - June 2015 - 55
IEEE Microwave Magazine - June 2015 - 56
IEEE Microwave Magazine - June 2015 - 57
IEEE Microwave Magazine - June 2015 - 58
IEEE Microwave Magazine - June 2015 - 59
IEEE Microwave Magazine - June 2015 - 60
IEEE Microwave Magazine - June 2015 - 61
IEEE Microwave Magazine - June 2015 - 62
IEEE Microwave Magazine - June 2015 - 63
IEEE Microwave Magazine - June 2015 - 64
IEEE Microwave Magazine - June 2015 - 65
IEEE Microwave Magazine - June 2015 - 66
IEEE Microwave Magazine - June 2015 - 67
IEEE Microwave Magazine - June 2015 - 68
IEEE Microwave Magazine - June 2015 - 69
IEEE Microwave Magazine - June 2015 - 70
IEEE Microwave Magazine - June 2015 - 71
IEEE Microwave Magazine - June 2015 - 72
IEEE Microwave Magazine - June 2015 - 73
IEEE Microwave Magazine - June 2015 - 74
IEEE Microwave Magazine - June 2015 - 75
IEEE Microwave Magazine - June 2015 - 76
IEEE Microwave Magazine - June 2015 - 77
IEEE Microwave Magazine - June 2015 - 78
IEEE Microwave Magazine - June 2015 - 79
IEEE Microwave Magazine - June 2015 - 80
IEEE Microwave Magazine - June 2015 - 81
IEEE Microwave Magazine - June 2015 - 82
IEEE Microwave Magazine - June 2015 - 83
IEEE Microwave Magazine - June 2015 - 84
IEEE Microwave Magazine - June 2015 - 85
IEEE Microwave Magazine - June 2015 - 86
IEEE Microwave Magazine - June 2015 - 87
IEEE Microwave Magazine - June 2015 - 88
IEEE Microwave Magazine - June 2015 - 89
IEEE Microwave Magazine - June 2015 - 90
IEEE Microwave Magazine - June 2015 - 91
IEEE Microwave Magazine - June 2015 - 92
IEEE Microwave Magazine - June 2015 - 93
IEEE Microwave Magazine - June 2015 - 94
IEEE Microwave Magazine - June 2015 - 95
IEEE Microwave Magazine - June 2015 - 96
IEEE Microwave Magazine - June 2015 - 97
IEEE Microwave Magazine - June 2015 - 98
IEEE Microwave Magazine - June 2015 - 99
IEEE Microwave Magazine - June 2015 - 100
IEEE Microwave Magazine - June 2015 - 101
IEEE Microwave Magazine - June 2015 - 102
IEEE Microwave Magazine - June 2015 - 103
IEEE Microwave Magazine - June 2015 - 104
IEEE Microwave Magazine - June 2015 - 105
IEEE Microwave Magazine - June 2015 - 106
IEEE Microwave Magazine - June 2015 - 107
IEEE Microwave Magazine - June 2015 - 108
IEEE Microwave Magazine - June 2015 - 109
IEEE Microwave Magazine - June 2015 - 110
IEEE Microwave Magazine - June 2015 - 111
IEEE Microwave Magazine - June 2015 - 112
IEEE Microwave Magazine - June 2015 - 113
IEEE Microwave Magazine - June 2015 - 114
IEEE Microwave Magazine - June 2015 - 115
IEEE Microwave Magazine - June 2015 - 116
IEEE Microwave Magazine - June 2015 - 117
IEEE Microwave Magazine - June 2015 - 118
IEEE Microwave Magazine - June 2015 - 119
IEEE Microwave Magazine - June 2015 - 120
IEEE Microwave Magazine - June 2015 - 121
IEEE Microwave Magazine - June 2015 - 122
IEEE Microwave Magazine - June 2015 - 123
IEEE Microwave Magazine - June 2015 - 124
IEEE Microwave Magazine - June 2015 - 125
IEEE Microwave Magazine - June 2015 - 126
IEEE Microwave Magazine - June 2015 - 127
IEEE Microwave Magazine - June 2015 - 128
IEEE Microwave Magazine - June 2015 - 129
IEEE Microwave Magazine - June 2015 - 130
IEEE Microwave Magazine - June 2015 - 131
IEEE Microwave Magazine - June 2015 - 132
IEEE Microwave Magazine - June 2015 - 133
IEEE Microwave Magazine - June 2015 - 134
IEEE Microwave Magazine - June 2015 - 135
IEEE Microwave Magazine - June 2015 - 136
IEEE Microwave Magazine - June 2015 - 137
IEEE Microwave Magazine - June 2015 - 138
IEEE Microwave Magazine - June 2015 - 139
IEEE Microwave Magazine - June 2015 - 140
IEEE Microwave Magazine - June 2015 - 141
IEEE Microwave Magazine - June 2015 - 142
IEEE Microwave Magazine - June 2015 - 143
IEEE Microwave Magazine - June 2015 - 144
IEEE Microwave Magazine - June 2015 - Cover3
IEEE Microwave Magazine - June 2015 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/microwave_201903
https://www.nxtbook.com/nxtbooks/ieee/microwave_201902
https://www.nxtbook.com/nxtbooks/ieee/microwave_201901
https://www.nxtbook.com/nxtbooks/ieee/microwave_20181112
https://www.nxtbook.com/nxtbooks/ieee/microwave_20180910
https://www.nxtbook.com/nxtbooks/ieee/microwave_20180708
https://www.nxtbook.com/nxtbooks/ieee/microwave_201806
https://www.nxtbook.com/nxtbooks/ieee/microwave_201805
https://www.nxtbook.com/nxtbooks/ieee/microwave_201803
https://www.nxtbook.com/nxtbooks/ieee/microwave_january2018
https://www.nxtbook.com/nxtbooks/ieee/microwave_november2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_september2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_july2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_june2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_may2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_march2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_january2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_december2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_november2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_october2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_september2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_august2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_july2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_june2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_may2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_april2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_march2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_february2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_january2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_december2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_november2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_october2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_september2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_august2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_july2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_june2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_may2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_april2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_march2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_january2015
https://www.nxtbookmedia.com