IEEE Microwave Magazine - June 2015 - 32
The problem is the frequency
response of the device used for
coupling the control signal to the
variable-gain or variable-attenuation
element in the sweep generator.
C eff = S 22 - S 21
the forward transmission of a two-port device fed by
a signal with constant power, as shown in Figure 5 [7].
Applying the rule for reducing a loop in a signal
flow graph (see [1, pp. 189-192]) by dividing the coefficient of the forward path by (1 - t loop) yields
L = G const.
TX
,
1 - CL Ceff
(6)
where TX denotes the transmission coefficient and Ceff
denotes the reflection coefficient. This Ceff of the twoport device plays the same role as the effective source
match of the leveled signal source and, hence, uses the
same notation. Comparing (5) with (6) yields
Port 3
Z0
Z0/3
Port 1
Z0/3
Z0
Port 2
Z0
Figure 6. A three-resistor power divider is matched at all
three ports and transmits a quarter of the input power to
each of the outputs. This divider should not be used in a
leveling loop since the effective source match Ceff is -0.5.
We now have the tools for calculating Ceff for both
the divider and splitter (see "Power Leveling") [8]. If
a directional coupler with an ideal isolation of S 32 = 0
were used, the reflected wave from the DUT would
not influence the leveling loop and the effective source
match would reduce to S 22 .
Effective Source Match of Divider and Splitter
Three-Resistor Power Divider
A three-resistor divider (each resistor has the value
Z 0 /3; see Figure 6) exhibits matched ports ^S ii = 0 h and
transmits signals according to S ij = 0.5 for i ! j (see [1,
pp. 317-318]). Here, Z 0 denotes the wave impedance of
the devices and transmission lines and is usually 50 X.
With these values, (7) gives
Ceff, divider = 0 - 0.5 0.5 =-0.5 (!) .
0.5
Leveled
The forward transmission of a two-resistor splitter is the
same as before, that is, S 21 = S 31 = 0.5. Both resistors have
a value of Z 0 . Figure 7 shows the circuit of this device.
An incident wave at port 2 encounters an impedance of
Z 0 + Z 0 (Z 0 + Z 0) = ^5/3 h Z 0, which results in a reflection coefficient of S 22 = ^5/3 - 1 h /^5/3 + 1 h = 0.25.
The transmission coefficient S 32 from the output to
the detector, the root cause of the problem (the leakage
of a reflected wave to the leveling detector), can be calculated as follows. The voltage at port 3 is
V3 = V2
Z0
Port 2 (Output)
Z0
V2, incident
Figure 7. A two-resistor power splitter is matched only
at port 1 and transmits a quarter of the input power to
each of the outputs. This splitter is the device of choice for
a leveling loop since the effective source match Ceff for an
incident wave at port 2 is zero.
32
R $ Z 0 = 0.2 V
2
Z0 + R Z0 + Z0
with
R = Z 0 (Z 0 + Z 0),
Port 1 (Input)
Z0
(8)
As previously mentioned, using this divider in a leveling loop is ill-advised. Although the divider itself may
have an excellent return loss at port 2, the transmission
of an incident wave at port 2 to the detector corrupts
the power leveling and results in poor effective source
matching. In this case, the input power to the DUT
would depend on its reflection coefficient.
Port 3 (Detector)
Z0
(7)
Two-Resistor Power Splitter
Z0/3
Z0
S 32
.
S 31
(9)
where R/ ^Z 0 + R h describes the voltage divider from
port 2 to the branching point and Z 0 / ^Z 0 + Z 0 h is the
voltage divider from the branching point to port 3. Due
to the nonzero reflection, the voltage at port 2 is not
equal to the incident wave V2, incident
V2 = V2, incident (1 + S 22) = 1.25 V2, incident .
(10)
The transmission coefficient from the output to the
detector is therefore
June 2015
Table of Contents for the Digital Edition of IEEE Microwave Magazine - June 2015
IEEE Microwave Magazine - June 2015 - Cover1
IEEE Microwave Magazine - June 2015 - Cover2
IEEE Microwave Magazine - June 2015 - 1
IEEE Microwave Magazine - June 2015 - 2
IEEE Microwave Magazine - June 2015 - 3
IEEE Microwave Magazine - June 2015 - 4
IEEE Microwave Magazine - June 2015 - 5
IEEE Microwave Magazine - June 2015 - 6
IEEE Microwave Magazine - June 2015 - 7
IEEE Microwave Magazine - June 2015 - 8
IEEE Microwave Magazine - June 2015 - 9
IEEE Microwave Magazine - June 2015 - 10
IEEE Microwave Magazine - June 2015 - 11
IEEE Microwave Magazine - June 2015 - 12
IEEE Microwave Magazine - June 2015 - 13
IEEE Microwave Magazine - June 2015 - 14
IEEE Microwave Magazine - June 2015 - 15
IEEE Microwave Magazine - June 2015 - 16
IEEE Microwave Magazine - June 2015 - 17
IEEE Microwave Magazine - June 2015 - 18
IEEE Microwave Magazine - June 2015 - 19
IEEE Microwave Magazine - June 2015 - 20
IEEE Microwave Magazine - June 2015 - 21
IEEE Microwave Magazine - June 2015 - 22
IEEE Microwave Magazine - June 2015 - 23
IEEE Microwave Magazine - June 2015 - 24
IEEE Microwave Magazine - June 2015 - 25
IEEE Microwave Magazine - June 2015 - 26
IEEE Microwave Magazine - June 2015 - 27
IEEE Microwave Magazine - June 2015 - 28
IEEE Microwave Magazine - June 2015 - 29
IEEE Microwave Magazine - June 2015 - 30
IEEE Microwave Magazine - June 2015 - 31
IEEE Microwave Magazine - June 2015 - 32
IEEE Microwave Magazine - June 2015 - 33
IEEE Microwave Magazine - June 2015 - 34
IEEE Microwave Magazine - June 2015 - 35
IEEE Microwave Magazine - June 2015 - 36
IEEE Microwave Magazine - June 2015 - 37
IEEE Microwave Magazine - June 2015 - 38
IEEE Microwave Magazine - June 2015 - 39
IEEE Microwave Magazine - June 2015 - 40
IEEE Microwave Magazine - June 2015 - 41
IEEE Microwave Magazine - June 2015 - 42
IEEE Microwave Magazine - June 2015 - 43
IEEE Microwave Magazine - June 2015 - 44
IEEE Microwave Magazine - June 2015 - 45
IEEE Microwave Magazine - June 2015 - 46
IEEE Microwave Magazine - June 2015 - 47
IEEE Microwave Magazine - June 2015 - 48
IEEE Microwave Magazine - June 2015 - 49
IEEE Microwave Magazine - June 2015 - 50
IEEE Microwave Magazine - June 2015 - 51
IEEE Microwave Magazine - June 2015 - 52
IEEE Microwave Magazine - June 2015 - 53
IEEE Microwave Magazine - June 2015 - 54
IEEE Microwave Magazine - June 2015 - 55
IEEE Microwave Magazine - June 2015 - 56
IEEE Microwave Magazine - June 2015 - 57
IEEE Microwave Magazine - June 2015 - 58
IEEE Microwave Magazine - June 2015 - 59
IEEE Microwave Magazine - June 2015 - 60
IEEE Microwave Magazine - June 2015 - 61
IEEE Microwave Magazine - June 2015 - 62
IEEE Microwave Magazine - June 2015 - 63
IEEE Microwave Magazine - June 2015 - 64
IEEE Microwave Magazine - June 2015 - 65
IEEE Microwave Magazine - June 2015 - 66
IEEE Microwave Magazine - June 2015 - 67
IEEE Microwave Magazine - June 2015 - 68
IEEE Microwave Magazine - June 2015 - 69
IEEE Microwave Magazine - June 2015 - 70
IEEE Microwave Magazine - June 2015 - 71
IEEE Microwave Magazine - June 2015 - 72
IEEE Microwave Magazine - June 2015 - 73
IEEE Microwave Magazine - June 2015 - 74
IEEE Microwave Magazine - June 2015 - 75
IEEE Microwave Magazine - June 2015 - 76
IEEE Microwave Magazine - June 2015 - 77
IEEE Microwave Magazine - June 2015 - 78
IEEE Microwave Magazine - June 2015 - 79
IEEE Microwave Magazine - June 2015 - 80
IEEE Microwave Magazine - June 2015 - 81
IEEE Microwave Magazine - June 2015 - 82
IEEE Microwave Magazine - June 2015 - 83
IEEE Microwave Magazine - June 2015 - 84
IEEE Microwave Magazine - June 2015 - 85
IEEE Microwave Magazine - June 2015 - 86
IEEE Microwave Magazine - June 2015 - 87
IEEE Microwave Magazine - June 2015 - 88
IEEE Microwave Magazine - June 2015 - 89
IEEE Microwave Magazine - June 2015 - 90
IEEE Microwave Magazine - June 2015 - 91
IEEE Microwave Magazine - June 2015 - 92
IEEE Microwave Magazine - June 2015 - 93
IEEE Microwave Magazine - June 2015 - 94
IEEE Microwave Magazine - June 2015 - 95
IEEE Microwave Magazine - June 2015 - 96
IEEE Microwave Magazine - June 2015 - 97
IEEE Microwave Magazine - June 2015 - 98
IEEE Microwave Magazine - June 2015 - 99
IEEE Microwave Magazine - June 2015 - 100
IEEE Microwave Magazine - June 2015 - 101
IEEE Microwave Magazine - June 2015 - 102
IEEE Microwave Magazine - June 2015 - 103
IEEE Microwave Magazine - June 2015 - 104
IEEE Microwave Magazine - June 2015 - 105
IEEE Microwave Magazine - June 2015 - 106
IEEE Microwave Magazine - June 2015 - 107
IEEE Microwave Magazine - June 2015 - 108
IEEE Microwave Magazine - June 2015 - 109
IEEE Microwave Magazine - June 2015 - 110
IEEE Microwave Magazine - June 2015 - 111
IEEE Microwave Magazine - June 2015 - 112
IEEE Microwave Magazine - June 2015 - 113
IEEE Microwave Magazine - June 2015 - 114
IEEE Microwave Magazine - June 2015 - 115
IEEE Microwave Magazine - June 2015 - 116
IEEE Microwave Magazine - June 2015 - 117
IEEE Microwave Magazine - June 2015 - 118
IEEE Microwave Magazine - June 2015 - 119
IEEE Microwave Magazine - June 2015 - 120
IEEE Microwave Magazine - June 2015 - 121
IEEE Microwave Magazine - June 2015 - 122
IEEE Microwave Magazine - June 2015 - 123
IEEE Microwave Magazine - June 2015 - 124
IEEE Microwave Magazine - June 2015 - 125
IEEE Microwave Magazine - June 2015 - 126
IEEE Microwave Magazine - June 2015 - 127
IEEE Microwave Magazine - June 2015 - 128
IEEE Microwave Magazine - June 2015 - 129
IEEE Microwave Magazine - June 2015 - 130
IEEE Microwave Magazine - June 2015 - 131
IEEE Microwave Magazine - June 2015 - 132
IEEE Microwave Magazine - June 2015 - 133
IEEE Microwave Magazine - June 2015 - 134
IEEE Microwave Magazine - June 2015 - 135
IEEE Microwave Magazine - June 2015 - 136
IEEE Microwave Magazine - June 2015 - 137
IEEE Microwave Magazine - June 2015 - 138
IEEE Microwave Magazine - June 2015 - 139
IEEE Microwave Magazine - June 2015 - 140
IEEE Microwave Magazine - June 2015 - 141
IEEE Microwave Magazine - June 2015 - 142
IEEE Microwave Magazine - June 2015 - 143
IEEE Microwave Magazine - June 2015 - 144
IEEE Microwave Magazine - June 2015 - Cover3
IEEE Microwave Magazine - June 2015 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/microwave_201903
https://www.nxtbook.com/nxtbooks/ieee/microwave_201902
https://www.nxtbook.com/nxtbooks/ieee/microwave_201901
https://www.nxtbook.com/nxtbooks/ieee/microwave_20181112
https://www.nxtbook.com/nxtbooks/ieee/microwave_20180910
https://www.nxtbook.com/nxtbooks/ieee/microwave_20180708
https://www.nxtbook.com/nxtbooks/ieee/microwave_201806
https://www.nxtbook.com/nxtbooks/ieee/microwave_201805
https://www.nxtbook.com/nxtbooks/ieee/microwave_201803
https://www.nxtbook.com/nxtbooks/ieee/microwave_january2018
https://www.nxtbook.com/nxtbooks/ieee/microwave_november2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_september2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_july2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_june2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_may2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_march2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_january2017
https://www.nxtbook.com/nxtbooks/ieee/microwave_december2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_november2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_october2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_september2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_august2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_july2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_june2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_may2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_april2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_march2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_february2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_january2016
https://www.nxtbook.com/nxtbooks/ieee/microwave_december2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_november2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_october2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_september2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_august2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_july2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_june2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_may2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_april2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_march2015
https://www.nxtbook.com/nxtbooks/ieee/microwave_january2015
https://www.nxtbookmedia.com