IEEE Solid-States Circuits Magazine - Spring 2018 - 98

Moderator Tom Lee and the panelists of the Lessons Learned evening session.

his victory. The evening concluded
with a vigorous discussion on the
overall value of FoMs led by Bob Dobkin, and a good and educational time
was had by all.
-Paul Ferguson

Lessons Learned-Great Circuits
that Didn't Work-(Oops, If Only I
Had Known)
Mistakes Admitted at Tuesday
Evening issCC panel!
Organizers: Phillip Restle, IBM,
T.J. Watson Research Center, Yorktown Heights, New York; Kostas
Doris, NXP, Eindhoven, The Netherlands; Vivek De, Intel, Hillsboro,
Oregon; and Paul Ferguson, Analog Devices, Wilmington, Massachusetts.
■ Moderator: Tom Lee, Stanford University, California.
■ Panelists: Bram Nauta, University
of Twente, Enschede, The Netherlands; Nicky Lu, Etron Technology,
Hsinchu, Taiwan; Shanthi Pavan,
Institute of Technology, Madras,
Chennai, India; David J. Allstot, University of California, Berekely; Chris
Mangelsdorf, Analog Devices, California; Barrie Gilbert, Analog Devices NW Labs, Beaverton, Oregon;
and Jon Strange, MediaTek Wireless,
West Malling, United Kingdom.
Brave engineers showcased some of
their most vulnerable moments to an
audience of over 500 people at "Lessons
Learned-Great Circuits that Didn't
Work-(Oops, If Only I Had Known)"
evening panel at ISSCC 2018. Panelists exposed their (or their colleague's)
■

98

s p r i n g 2 0 18

error-prone circuits, teasing the spectators by challenging them to catch the
errors before the panelists exposed
them. In one case, the audience voted
on the correct arrangement of connections in a circuit only to be told that
the answer was "it depends." In the
end, the audience was shown how the
brave panelists (and their students and
colleagues) learned from and, in some
cases, picked up the pieces of their mistakes to create great circuits and franchise businesses.
-Phillip Restle
-Paul Ferguson

Can Artificial Intelligence Replace
My Job? The Dawn of a New IC
Industry with AI
Organizers: Jaeha Kim, Seoul National University, Seoul, Korea, and
Ki-Tae Park, Samsung Electronics,
Gyeonggi-do, Korea.
■ Moderator: Paul D. Franzon, North
Carolina State University, Raleigh.
■ Panelists: Bill Dally, NVIDIA, Santa
Clara, California; Georges Gielen,
KU Leuven, Belgium; Dario Gil,
IBM Research, Yorktown Heights,
New York; Antun Domic, Synopsys,
Mountain View, California; Seung
Hoon Tong, Samsung Electronics,
Gyeonggi-do, Korea; and Hsien-Hsin
Sean Lee, TSMC, Hsinchu, Taiwan.
An evening session held on 13 February 2018 addressed the dreaded
question: "Can artificial intelligence
(AI) replace IC designers?" The panel
was moderated by Prof. Paul Franzon and consisted of renowned AI
experts from industry and academia.
The session was attended by nearly
300 people with strong interests and
■

IEEE SOLID-STATE CIRCUITS MAGAZINE

opinions on how AI will shape the
IC industry.
At the beginning of the discussion,
it seemed inevitable that AI will take
over our jobs. Although it was a madeup demonstration, Siri answering a
question "Siri, how do you design a
current mirror?" certainly made that
impression. IC design does consist of
many routine tasks, e.g., beating models and simulations, that can be easily
automated. Furthermore, AI empowered by GPUs, neuromorphic ICs, and
quantum computing is expected to surpass human's abilities even in nonroutine, cognitive tasks.
However, the panel reached a near
consensus toward the end of the
even ing that AI won't "replace" IC
designers. Instead, it will solve many
narrow-scoped, well-defined problems
to "assist" IC designers. While AI can
be very powerful at solving problems with big data of well-defined
inputs and outputs, it won't be able to
act on its own to design a complex system like an IC. A practical constraint
is that the number of designs being
done today is rather small (10,000
per year), not enough to train AI or to
justify its cost of development. Most
importantly, any AI technology is not
sustainable unless it serves a human's
need or purpose.
The panel was quite successful in
defending its position against intense
questions from the audience. The survey conducted at the end showed that
the majority of the attendees were
convinced that AI would not replace
our jobs.
-Jaeha Kim



Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Spring 2018

Contents
IEEE Solid-States Circuits Magazine - Spring 2018 - Cover1
IEEE Solid-States Circuits Magazine - Spring 2018 - Cover2
IEEE Solid-States Circuits Magazine - Spring 2018 - Contents
IEEE Solid-States Circuits Magazine - Spring 2018 - 2
IEEE Solid-States Circuits Magazine - Spring 2018 - 3
IEEE Solid-States Circuits Magazine - Spring 2018 - 4
IEEE Solid-States Circuits Magazine - Spring 2018 - 5
IEEE Solid-States Circuits Magazine - Spring 2018 - 6
IEEE Solid-States Circuits Magazine - Spring 2018 - 7
IEEE Solid-States Circuits Magazine - Spring 2018 - 8
IEEE Solid-States Circuits Magazine - Spring 2018 - 9
IEEE Solid-States Circuits Magazine - Spring 2018 - 10
IEEE Solid-States Circuits Magazine - Spring 2018 - 11
IEEE Solid-States Circuits Magazine - Spring 2018 - 12
IEEE Solid-States Circuits Magazine - Spring 2018 - 13
IEEE Solid-States Circuits Magazine - Spring 2018 - 14
IEEE Solid-States Circuits Magazine - Spring 2018 - 15
IEEE Solid-States Circuits Magazine - Spring 2018 - 16
IEEE Solid-States Circuits Magazine - Spring 2018 - 17
IEEE Solid-States Circuits Magazine - Spring 2018 - 18
IEEE Solid-States Circuits Magazine - Spring 2018 - 19
IEEE Solid-States Circuits Magazine - Spring 2018 - 20
IEEE Solid-States Circuits Magazine - Spring 2018 - 21
IEEE Solid-States Circuits Magazine - Spring 2018 - 22
IEEE Solid-States Circuits Magazine - Spring 2018 - 23
IEEE Solid-States Circuits Magazine - Spring 2018 - 24
IEEE Solid-States Circuits Magazine - Spring 2018 - 25
IEEE Solid-States Circuits Magazine - Spring 2018 - 26
IEEE Solid-States Circuits Magazine - Spring 2018 - 27
IEEE Solid-States Circuits Magazine - Spring 2018 - 28
IEEE Solid-States Circuits Magazine - Spring 2018 - 29
IEEE Solid-States Circuits Magazine - Spring 2018 - 30
IEEE Solid-States Circuits Magazine - Spring 2018 - 31
IEEE Solid-States Circuits Magazine - Spring 2018 - 32
IEEE Solid-States Circuits Magazine - Spring 2018 - 33
IEEE Solid-States Circuits Magazine - Spring 2018 - 34
IEEE Solid-States Circuits Magazine - Spring 2018 - 35
IEEE Solid-States Circuits Magazine - Spring 2018 - 36
IEEE Solid-States Circuits Magazine - Spring 2018 - 37
IEEE Solid-States Circuits Magazine - Spring 2018 - 38
IEEE Solid-States Circuits Magazine - Spring 2018 - 39
IEEE Solid-States Circuits Magazine - Spring 2018 - 40
IEEE Solid-States Circuits Magazine - Spring 2018 - 41
IEEE Solid-States Circuits Magazine - Spring 2018 - 42
IEEE Solid-States Circuits Magazine - Spring 2018 - 43
IEEE Solid-States Circuits Magazine - Spring 2018 - 44
IEEE Solid-States Circuits Magazine - Spring 2018 - 45
IEEE Solid-States Circuits Magazine - Spring 2018 - 46
IEEE Solid-States Circuits Magazine - Spring 2018 - 47
IEEE Solid-States Circuits Magazine - Spring 2018 - 48
IEEE Solid-States Circuits Magazine - Spring 2018 - 49
IEEE Solid-States Circuits Magazine - Spring 2018 - 50
IEEE Solid-States Circuits Magazine - Spring 2018 - 51
IEEE Solid-States Circuits Magazine - Spring 2018 - 52
IEEE Solid-States Circuits Magazine - Spring 2018 - 53
IEEE Solid-States Circuits Magazine - Spring 2018 - 54
IEEE Solid-States Circuits Magazine - Spring 2018 - 55
IEEE Solid-States Circuits Magazine - Spring 2018 - 56
IEEE Solid-States Circuits Magazine - Spring 2018 - 57
IEEE Solid-States Circuits Magazine - Spring 2018 - 58
IEEE Solid-States Circuits Magazine - Spring 2018 - 59
IEEE Solid-States Circuits Magazine - Spring 2018 - 60
IEEE Solid-States Circuits Magazine - Spring 2018 - 61
IEEE Solid-States Circuits Magazine - Spring 2018 - 62
IEEE Solid-States Circuits Magazine - Spring 2018 - 63
IEEE Solid-States Circuits Magazine - Spring 2018 - 64
IEEE Solid-States Circuits Magazine - Spring 2018 - 65
IEEE Solid-States Circuits Magazine - Spring 2018 - 66
IEEE Solid-States Circuits Magazine - Spring 2018 - 67
IEEE Solid-States Circuits Magazine - Spring 2018 - 68
IEEE Solid-States Circuits Magazine - Spring 2018 - 69
IEEE Solid-States Circuits Magazine - Spring 2018 - 70
IEEE Solid-States Circuits Magazine - Spring 2018 - 71
IEEE Solid-States Circuits Magazine - Spring 2018 - 72
IEEE Solid-States Circuits Magazine - Spring 2018 - 73
IEEE Solid-States Circuits Magazine - Spring 2018 - 74
IEEE Solid-States Circuits Magazine - Spring 2018 - 75
IEEE Solid-States Circuits Magazine - Spring 2018 - 76
IEEE Solid-States Circuits Magazine - Spring 2018 - 77
IEEE Solid-States Circuits Magazine - Spring 2018 - 78
IEEE Solid-States Circuits Magazine - Spring 2018 - 79
IEEE Solid-States Circuits Magazine - Spring 2018 - 80
IEEE Solid-States Circuits Magazine - Spring 2018 - 81
IEEE Solid-States Circuits Magazine - Spring 2018 - 82
IEEE Solid-States Circuits Magazine - Spring 2018 - 83
IEEE Solid-States Circuits Magazine - Spring 2018 - 84
IEEE Solid-States Circuits Magazine - Spring 2018 - 85
IEEE Solid-States Circuits Magazine - Spring 2018 - 86
IEEE Solid-States Circuits Magazine - Spring 2018 - 87
IEEE Solid-States Circuits Magazine - Spring 2018 - 88
IEEE Solid-States Circuits Magazine - Spring 2018 - 89
IEEE Solid-States Circuits Magazine - Spring 2018 - 90
IEEE Solid-States Circuits Magazine - Spring 2018 - 91
IEEE Solid-States Circuits Magazine - Spring 2018 - 92
IEEE Solid-States Circuits Magazine - Spring 2018 - 93
IEEE Solid-States Circuits Magazine - Spring 2018 - 94
IEEE Solid-States Circuits Magazine - Spring 2018 - 95
IEEE Solid-States Circuits Magazine - Spring 2018 - 96
IEEE Solid-States Circuits Magazine - Spring 2018 - 97
IEEE Solid-States Circuits Magazine - Spring 2018 - 98
IEEE Solid-States Circuits Magazine - Spring 2018 - 99
IEEE Solid-States Circuits Magazine - Spring 2018 - 100
IEEE Solid-States Circuits Magazine - Spring 2018 - 101
IEEE Solid-States Circuits Magazine - Spring 2018 - 102
IEEE Solid-States Circuits Magazine - Spring 2018 - 103
IEEE Solid-States Circuits Magazine - Spring 2018 - 104
IEEE Solid-States Circuits Magazine - Spring 2018 - 105
IEEE Solid-States Circuits Magazine - Spring 2018 - 106
IEEE Solid-States Circuits Magazine - Spring 2018 - 107
IEEE Solid-States Circuits Magazine - Spring 2018 - 108
IEEE Solid-States Circuits Magazine - Spring 2018 - 109
IEEE Solid-States Circuits Magazine - Spring 2018 - 110
IEEE Solid-States Circuits Magazine - Spring 2018 - 111
IEEE Solid-States Circuits Magazine - Spring 2018 - 112
IEEE Solid-States Circuits Magazine - Spring 2018 - 113
IEEE Solid-States Circuits Magazine - Spring 2018 - 114
IEEE Solid-States Circuits Magazine - Spring 2018 - 115
IEEE Solid-States Circuits Magazine - Spring 2018 - 116
IEEE Solid-States Circuits Magazine - Spring 2018 - 117
IEEE Solid-States Circuits Magazine - Spring 2018 - 118
IEEE Solid-States Circuits Magazine - Spring 2018 - 119
IEEE Solid-States Circuits Magazine - Spring 2018 - 120
IEEE Solid-States Circuits Magazine - Spring 2018 - 121
IEEE Solid-States Circuits Magazine - Spring 2018 - 122
IEEE Solid-States Circuits Magazine - Spring 2018 - 123
IEEE Solid-States Circuits Magazine - Spring 2018 - 124
IEEE Solid-States Circuits Magazine - Spring 2018 - Cover3
IEEE Solid-States Circuits Magazine - Spring 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com