IEEE Solid-States Circuits Magazine - Summer 2018 - 15
RF
R2
R1
A
-
+
B
Vin
IC 2
C1
Vout
R1
Vin
R4
R3
R2
Req
C2
R3
+-
+-
+
Vx
-
-+
R1
-+
R3
C1
C2
Vout
C2
R2
RF
Figure 15: A noninverting integrator.
but shifted by TCK /2, we conclude
that V1 · V2 + V3 · V4 + V5 · V6 + V7 · V8
is a signal with four times the input
frequency. The implementation is
shown in Figure 13(b). In reality, the
AND and OR gates are replaced
by NANDs.
The multiplication factor in Figures 12 and 13 is difficult to change,
a point of contrast to PLLs. Moreover,
delay mismatches among the stages
give rise to jitter and spurs.
The frequency multiplication
ability of DLLs can be exploited to
detect false locking. Consider the
architecture shown in Figure 14,
where an edge combiner multiplies
the frequency by a factor of N. This
result, fmult, is then divided by N and
compared to fin . With correct locking, fmult = N fin, leading to a low average value for the PFD output. In the
presence of false lock, on the other
hand, the total delay from CK in to
CK out is equa l to or g reater tha n
2TCK, and fmult < N fin . As a result, the
PFD output exhibits a higher average. The false lock flag can then be
used to adjust the tuning range of
the delay line so that the total delay
remains less than 2TCK.
Questions for the Reader
1) Suppose the up and down currents
in the charge pump of Figure 2(d)
have a mismatch of DI.How does
the DLL react to this mismatch?
2) The CP imperfections in Figure 2(d) create a periodic ripple
Figure 16: The Tow-Thomas biquad.
in Vcont . What is the effect of this
ripple on the output waveform?
Answers to Last Issue's Questions
1) Figure 15 shows a noninverting integrator. Derive the condition for the
elements so that the circuit acts as
an ideal integrator. What is the principal difficulty with this topology?
W e h a v e VB . VA = Vout R 1 /
(R 1 +R 2). Also, (Vin -VB)/R 3 + (Vout VB) /R 4 = VB C 2 s. Thus,
Vin = V
R1 C2 s
out
R1 + R2
R3
+ Vout c R 1
R1 + R2
R + R4
$ 3
- 1 m . (8)
R3 R4
R4
For ideal integration, the second
term on the right-hand side must
vanish, yielding R 2 /R 1 = R 4 /R 3 .
Another perspective provides
additional insight. If Vout is proportional to the integral of Vin,
t h e n s o a r e VA a n d VB . T h u s ,
I C2 = C 2 dVB /dt is also proportional to Vin, a condition that is met
only if the Norton equivalent of the
circuit in the dashed box reduces
to an ideal current source. Since
the Norton resistance is given by
R 3 | | R eq, we set R eq to - R 3 and
hence obtain R 2 /R 1 = R 4 /R 3 .
The pr i n c ip a l issue here is
that the circuit relies on equal
positive and negative feedback
factors and is prone to latch up
in the presence of component
mismatches.
2) Suppose the Tow -Thomas biquad of Figure 16 senses a large,
narrowband undesired channel at ~ = ~ -3dB . Which of the two
integrators produces greater voltage swings and hence experiences
more nonlinearity?
We have Vout /VX = - 1/ (R 3 C 2 s) .
The relative swings in the two
integrator outputs depend on the
component values. For example,
i f C 1 = C 2, R 2 = R 3 = R F , a n d
Q = 1, t h e n ~ n = 1/ (R 3 C 2) a n d
~ -3dB = 1.27~ n = 1.27/ (R 3 C 2) .
T h a t i s , | Vout /VX | = 1/1.27. I n
this case, the first integrator compresses first. If the undesired
channel occurs at 2~ -3dB, we have
| Vout /VX | = 1/2.54, observing even
a greater swing disparity.
References
[1] J. J. Spilker and D. T. Magill, "The delaylock discriminator: An optimum tracking
device," Proc. IEEE, vol. 49, pp. 1403-1416,
Sept. 1961.
[2] M. Bazes, "A novel precision MOS synchronous delay line," IEEE J. Solid-State Circuits, vol. 20, pp. 1265-1271, Dec. 1985.
[3] M. G. Johnson and E. I. Hudson, "A variable delay line PLL for CPU-coprocessor
synchronization," IEEE J. Solid-State Circuits, vol. 23, pp. 1218-1223, Oct. 1988.
[4] M. J. E. Lee, W. J. Dally, T. Greer, H. T. Ng,
R. Farjad-Rad, J. Poulton, and R. Senthinathan, "Jitter transfer characteristics of
delay-locked loops: Theories and design
techniques," IEEE J. Solid-State Circuits,
vol. 38, pp. 614-621, Apr. 2003.
[5] A. Homayoun and B. Razavi, "Relation
between delay line phase noise and ring
oscillator phase noise," IEEE J. Solid-State
Circuits, vol. 49, pp. 384-391, Feb. 2014.
[6] J. Sonntag and R. Leonowich, "A monolithic
CMOS 10 MHz DPLL for burst-mode data retiming," in Proc. Int. Solid-State Circuits Conf.
Dig. Tech. Papers, Feb. 1990, pp. 194-195.
IEEE SOLID-STATE CIRCUITS MAGAZINE
su m m e r 2 0 18
15
IEEE Solid-States Circuits Magazine - Summer 2018
Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Summer 2018
Contents
IEEE Solid-States Circuits Magazine - Summer 2018 - Cover1
IEEE Solid-States Circuits Magazine - Summer 2018 - Cover2
IEEE Solid-States Circuits Magazine - Summer 2018 - Contents
IEEE Solid-States Circuits Magazine - Summer 2018 - 2
IEEE Solid-States Circuits Magazine - Summer 2018 - 3
IEEE Solid-States Circuits Magazine - Summer 2018 - 4
IEEE Solid-States Circuits Magazine - Summer 2018 - 5
IEEE Solid-States Circuits Magazine - Summer 2018 - 6
IEEE Solid-States Circuits Magazine - Summer 2018 - 7
IEEE Solid-States Circuits Magazine - Summer 2018 - 8
IEEE Solid-States Circuits Magazine - Summer 2018 - 9
IEEE Solid-States Circuits Magazine - Summer 2018 - 10
IEEE Solid-States Circuits Magazine - Summer 2018 - 11
IEEE Solid-States Circuits Magazine - Summer 2018 - 12
IEEE Solid-States Circuits Magazine - Summer 2018 - 13
IEEE Solid-States Circuits Magazine - Summer 2018 - 14
IEEE Solid-States Circuits Magazine - Summer 2018 - 15
IEEE Solid-States Circuits Magazine - Summer 2018 - 16
IEEE Solid-States Circuits Magazine - Summer 2018 - 17
IEEE Solid-States Circuits Magazine - Summer 2018 - 18
IEEE Solid-States Circuits Magazine - Summer 2018 - 19
IEEE Solid-States Circuits Magazine - Summer 2018 - 20
IEEE Solid-States Circuits Magazine - Summer 2018 - 21
IEEE Solid-States Circuits Magazine - Summer 2018 - 22
IEEE Solid-States Circuits Magazine - Summer 2018 - 23
IEEE Solid-States Circuits Magazine - Summer 2018 - 24
IEEE Solid-States Circuits Magazine - Summer 2018 - 25
IEEE Solid-States Circuits Magazine - Summer 2018 - 26
IEEE Solid-States Circuits Magazine - Summer 2018 - 27
IEEE Solid-States Circuits Magazine - Summer 2018 - 28
IEEE Solid-States Circuits Magazine - Summer 2018 - 29
IEEE Solid-States Circuits Magazine - Summer 2018 - 30
IEEE Solid-States Circuits Magazine - Summer 2018 - 31
IEEE Solid-States Circuits Magazine - Summer 2018 - 32
IEEE Solid-States Circuits Magazine - Summer 2018 - 33
IEEE Solid-States Circuits Magazine - Summer 2018 - 34
IEEE Solid-States Circuits Magazine - Summer 2018 - 35
IEEE Solid-States Circuits Magazine - Summer 2018 - 36
IEEE Solid-States Circuits Magazine - Summer 2018 - 37
IEEE Solid-States Circuits Magazine - Summer 2018 - 38
IEEE Solid-States Circuits Magazine - Summer 2018 - 39
IEEE Solid-States Circuits Magazine - Summer 2018 - 40
IEEE Solid-States Circuits Magazine - Summer 2018 - 41
IEEE Solid-States Circuits Magazine - Summer 2018 - 42
IEEE Solid-States Circuits Magazine - Summer 2018 - 43
IEEE Solid-States Circuits Magazine - Summer 2018 - 44
IEEE Solid-States Circuits Magazine - Summer 2018 - 45
IEEE Solid-States Circuits Magazine - Summer 2018 - 46
IEEE Solid-States Circuits Magazine - Summer 2018 - 47
IEEE Solid-States Circuits Magazine - Summer 2018 - 48
IEEE Solid-States Circuits Magazine - Summer 2018 - 49
IEEE Solid-States Circuits Magazine - Summer 2018 - 50
IEEE Solid-States Circuits Magazine - Summer 2018 - 51
IEEE Solid-States Circuits Magazine - Summer 2018 - 52
IEEE Solid-States Circuits Magazine - Summer 2018 - 53
IEEE Solid-States Circuits Magazine - Summer 2018 - 54
IEEE Solid-States Circuits Magazine - Summer 2018 - 55
IEEE Solid-States Circuits Magazine - Summer 2018 - 56
IEEE Solid-States Circuits Magazine - Summer 2018 - 57
IEEE Solid-States Circuits Magazine - Summer 2018 - 58
IEEE Solid-States Circuits Magazine - Summer 2018 - 59
IEEE Solid-States Circuits Magazine - Summer 2018 - 60
IEEE Solid-States Circuits Magazine - Summer 2018 - 61
IEEE Solid-States Circuits Magazine - Summer 2018 - 62
IEEE Solid-States Circuits Magazine - Summer 2018 - 63
IEEE Solid-States Circuits Magazine - Summer 2018 - 64
IEEE Solid-States Circuits Magazine - Summer 2018 - 65
IEEE Solid-States Circuits Magazine - Summer 2018 - 66
IEEE Solid-States Circuits Magazine - Summer 2018 - 67
IEEE Solid-States Circuits Magazine - Summer 2018 - 68
IEEE Solid-States Circuits Magazine - Summer 2018 - 69
IEEE Solid-States Circuits Magazine - Summer 2018 - 70
IEEE Solid-States Circuits Magazine - Summer 2018 - 71
IEEE Solid-States Circuits Magazine - Summer 2018 - 72
IEEE Solid-States Circuits Magazine - Summer 2018 - 73
IEEE Solid-States Circuits Magazine - Summer 2018 - 74
IEEE Solid-States Circuits Magazine - Summer 2018 - 75
IEEE Solid-States Circuits Magazine - Summer 2018 - 76
IEEE Solid-States Circuits Magazine - Summer 2018 - 77
IEEE Solid-States Circuits Magazine - Summer 2018 - 78
IEEE Solid-States Circuits Magazine - Summer 2018 - 79
IEEE Solid-States Circuits Magazine - Summer 2018 - 80
IEEE Solid-States Circuits Magazine - Summer 2018 - 81
IEEE Solid-States Circuits Magazine - Summer 2018 - 82
IEEE Solid-States Circuits Magazine - Summer 2018 - 83
IEEE Solid-States Circuits Magazine - Summer 2018 - 84
IEEE Solid-States Circuits Magazine - Summer 2018 - 85
IEEE Solid-States Circuits Magazine - Summer 2018 - 86
IEEE Solid-States Circuits Magazine - Summer 2018 - 87
IEEE Solid-States Circuits Magazine - Summer 2018 - 88
IEEE Solid-States Circuits Magazine - Summer 2018 - 89
IEEE Solid-States Circuits Magazine - Summer 2018 - 90
IEEE Solid-States Circuits Magazine - Summer 2018 - 91
IEEE Solid-States Circuits Magazine - Summer 2018 - 92
IEEE Solid-States Circuits Magazine - Summer 2018 - 93
IEEE Solid-States Circuits Magazine - Summer 2018 - 94
IEEE Solid-States Circuits Magazine - Summer 2018 - 95
IEEE Solid-States Circuits Magazine - Summer 2018 - 96
IEEE Solid-States Circuits Magazine - Summer 2018 - 97
IEEE Solid-States Circuits Magazine - Summer 2018 - 98
IEEE Solid-States Circuits Magazine - Summer 2018 - 99
IEEE Solid-States Circuits Magazine - Summer 2018 - 100
IEEE Solid-States Circuits Magazine - Summer 2018 - 101
IEEE Solid-States Circuits Magazine - Summer 2018 - 102
IEEE Solid-States Circuits Magazine - Summer 2018 - 103
IEEE Solid-States Circuits Magazine - Summer 2018 - 104
IEEE Solid-States Circuits Magazine - Summer 2018 - 105
IEEE Solid-States Circuits Magazine - Summer 2018 - 106
IEEE Solid-States Circuits Magazine - Summer 2018 - 107
IEEE Solid-States Circuits Magazine - Summer 2018 - 108
IEEE Solid-States Circuits Magazine - Summer 2018 - Cover3
IEEE Solid-States Circuits Magazine - Summer 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com