IEEE Solid-States Circuits Magazine - Summer 2018 - 18
The advantage of resilient designs is the ability
to mitigate the guard bands for both fast- and
slow-changing variations.
variations (e.g., temperature and
aging), resulting in higher average performance or energy efficiency. Since
commercial processors must satisfy
specific performance and power/
energy targets, performance or energyefficiency gains directly improve the
processor yield.
A key advantage of traditional
adaptive designs is the low design
overhead. The primary disadvantage
is the response-time requirement for
mitigating fast-changing variations,
such as high-frequency VDD droops.
Previous adaptive designs aimed to
reduce the impact of VDD droops on
path-timing margin by sensing the VDD
variation with an on-die monitor and
adjusting the FCLK during the droop
event [1], [5], [6]. Although these techniques may recover a small portion of
the timing-margin loss when the FCLK
is significantly faster than the resonant
droop frequency, the response time
limits the benefits across the DVFS
operating conditions. For this reason,
these designs still require FCLK or VDD
guard bands for fast-changing variations. In addition, the on-die monitors
require post-silicon calibration during
testing, resulting in higher test costs.
Resilient Designs
In contrast to traditional adaptive
designs that avoid timing-margin
failures in processor paths, resilient
timing-error detection and recovery
circuits [7]-[17] relax the responsetime constraint by allowing a dynamic
parameter variation to induce a pathtiming-margin failure. As illustrated in
Figure 2, a resilient design detects the
Clock Generator
PLL
Error
Error Control Unit
IF
DE
RA
EX
MEM
TRC
TRC
TRC
TRC
TRC
Data
Cache
WB
Replay
Instruction
Cache
PC
Duty
Cycle
1/2 FCLK
รท
X
clk_ref
RF
Core
Latch
Q
Error
Tuning Bits
CLK
EDS
EDS
...
FF
D
TRC
Error
FF
TRC
FIGURE 2: A resilient design with embedded EDS circuits and TRCs for error detection. PC:
program counter; IF: instruction fetch; DE: decode; RA: register access; EX: execute; MEM:
memory; X: exception; WB: write back; RF: register file; D: input data; Q: output data; CLK:
clock. (Image from [13].)
18
su m m e r 2 0 18
IEEE SOLID-STATE CIRCUITS MAGAZINE
timing-margin violation, isolates the
error from corrupting the architecture
state, and corrects the error through
a recovery technique (e.g., instruction
replay). As long as the resilient design
prevents the timing error from corrupting the architectural state of the
processor, error correction can occur
over multiple clock cycles. For this
reason, resilient circuits detect and
correct timing errors from both fastand slow-changing variations.
The resilient design in Figure 2
provides two separate circuits for error detection: 1) embedded errordetection sequential (EDS) circuits
[7]-[17] and 2) tunable replica circuits
(TRCs) [13]. The embedded EDS design replaces the receiving sequential
circuit in critical paths with an EDS
circuit to detect late timing transitions. The EDS circuit in Figure 2 is
a double-sampling with time-borrowing (DSTB) design [12], [13]. The shadow flip-flop (FF) and data-path latch
sample the input data (indicated as D
in Figure 2) on the rising and falling
clock edges, respectively. If the input
transitions between the rising and
falling clock edges (i.e., late), then the
latch output (indicated as Q in Figure 2)
and the FF output differ. An XOR logic
gate compares the latch and FF outputs to generate the error signal. The
error signals from each EDS circuit in a
pipeline stage drive an OR logic tree to
generate a single pipeline-error signal, which propagates to the writeback stage to invalidate the errant
instruction and to the error control unit
for error recovery.
A critical problem for some EDS
circuits [7]-[10] is the susceptibility to
data-path metastability when the input
arrives close to a rising clock edge,
resulting in the possibility of undetected errors. For DSTB, the data-path
latch operates as a pulsed latch, thus
eliminating data-path metastability
during a rising clock edge. Although
the shadow FF output can become
metastable during a rising clock edge,
the error path behaves similarly to a
traditional synchronizer circuit, thus
greatly simplifying the metastability problem. Even though the DSTB
IEEE Solid-States Circuits Magazine - Summer 2018
Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Summer 2018
Contents
IEEE Solid-States Circuits Magazine - Summer 2018 - Cover1
IEEE Solid-States Circuits Magazine - Summer 2018 - Cover2
IEEE Solid-States Circuits Magazine - Summer 2018 - Contents
IEEE Solid-States Circuits Magazine - Summer 2018 - 2
IEEE Solid-States Circuits Magazine - Summer 2018 - 3
IEEE Solid-States Circuits Magazine - Summer 2018 - 4
IEEE Solid-States Circuits Magazine - Summer 2018 - 5
IEEE Solid-States Circuits Magazine - Summer 2018 - 6
IEEE Solid-States Circuits Magazine - Summer 2018 - 7
IEEE Solid-States Circuits Magazine - Summer 2018 - 8
IEEE Solid-States Circuits Magazine - Summer 2018 - 9
IEEE Solid-States Circuits Magazine - Summer 2018 - 10
IEEE Solid-States Circuits Magazine - Summer 2018 - 11
IEEE Solid-States Circuits Magazine - Summer 2018 - 12
IEEE Solid-States Circuits Magazine - Summer 2018 - 13
IEEE Solid-States Circuits Magazine - Summer 2018 - 14
IEEE Solid-States Circuits Magazine - Summer 2018 - 15
IEEE Solid-States Circuits Magazine - Summer 2018 - 16
IEEE Solid-States Circuits Magazine - Summer 2018 - 17
IEEE Solid-States Circuits Magazine - Summer 2018 - 18
IEEE Solid-States Circuits Magazine - Summer 2018 - 19
IEEE Solid-States Circuits Magazine - Summer 2018 - 20
IEEE Solid-States Circuits Magazine - Summer 2018 - 21
IEEE Solid-States Circuits Magazine - Summer 2018 - 22
IEEE Solid-States Circuits Magazine - Summer 2018 - 23
IEEE Solid-States Circuits Magazine - Summer 2018 - 24
IEEE Solid-States Circuits Magazine - Summer 2018 - 25
IEEE Solid-States Circuits Magazine - Summer 2018 - 26
IEEE Solid-States Circuits Magazine - Summer 2018 - 27
IEEE Solid-States Circuits Magazine - Summer 2018 - 28
IEEE Solid-States Circuits Magazine - Summer 2018 - 29
IEEE Solid-States Circuits Magazine - Summer 2018 - 30
IEEE Solid-States Circuits Magazine - Summer 2018 - 31
IEEE Solid-States Circuits Magazine - Summer 2018 - 32
IEEE Solid-States Circuits Magazine - Summer 2018 - 33
IEEE Solid-States Circuits Magazine - Summer 2018 - 34
IEEE Solid-States Circuits Magazine - Summer 2018 - 35
IEEE Solid-States Circuits Magazine - Summer 2018 - 36
IEEE Solid-States Circuits Magazine - Summer 2018 - 37
IEEE Solid-States Circuits Magazine - Summer 2018 - 38
IEEE Solid-States Circuits Magazine - Summer 2018 - 39
IEEE Solid-States Circuits Magazine - Summer 2018 - 40
IEEE Solid-States Circuits Magazine - Summer 2018 - 41
IEEE Solid-States Circuits Magazine - Summer 2018 - 42
IEEE Solid-States Circuits Magazine - Summer 2018 - 43
IEEE Solid-States Circuits Magazine - Summer 2018 - 44
IEEE Solid-States Circuits Magazine - Summer 2018 - 45
IEEE Solid-States Circuits Magazine - Summer 2018 - 46
IEEE Solid-States Circuits Magazine - Summer 2018 - 47
IEEE Solid-States Circuits Magazine - Summer 2018 - 48
IEEE Solid-States Circuits Magazine - Summer 2018 - 49
IEEE Solid-States Circuits Magazine - Summer 2018 - 50
IEEE Solid-States Circuits Magazine - Summer 2018 - 51
IEEE Solid-States Circuits Magazine - Summer 2018 - 52
IEEE Solid-States Circuits Magazine - Summer 2018 - 53
IEEE Solid-States Circuits Magazine - Summer 2018 - 54
IEEE Solid-States Circuits Magazine - Summer 2018 - 55
IEEE Solid-States Circuits Magazine - Summer 2018 - 56
IEEE Solid-States Circuits Magazine - Summer 2018 - 57
IEEE Solid-States Circuits Magazine - Summer 2018 - 58
IEEE Solid-States Circuits Magazine - Summer 2018 - 59
IEEE Solid-States Circuits Magazine - Summer 2018 - 60
IEEE Solid-States Circuits Magazine - Summer 2018 - 61
IEEE Solid-States Circuits Magazine - Summer 2018 - 62
IEEE Solid-States Circuits Magazine - Summer 2018 - 63
IEEE Solid-States Circuits Magazine - Summer 2018 - 64
IEEE Solid-States Circuits Magazine - Summer 2018 - 65
IEEE Solid-States Circuits Magazine - Summer 2018 - 66
IEEE Solid-States Circuits Magazine - Summer 2018 - 67
IEEE Solid-States Circuits Magazine - Summer 2018 - 68
IEEE Solid-States Circuits Magazine - Summer 2018 - 69
IEEE Solid-States Circuits Magazine - Summer 2018 - 70
IEEE Solid-States Circuits Magazine - Summer 2018 - 71
IEEE Solid-States Circuits Magazine - Summer 2018 - 72
IEEE Solid-States Circuits Magazine - Summer 2018 - 73
IEEE Solid-States Circuits Magazine - Summer 2018 - 74
IEEE Solid-States Circuits Magazine - Summer 2018 - 75
IEEE Solid-States Circuits Magazine - Summer 2018 - 76
IEEE Solid-States Circuits Magazine - Summer 2018 - 77
IEEE Solid-States Circuits Magazine - Summer 2018 - 78
IEEE Solid-States Circuits Magazine - Summer 2018 - 79
IEEE Solid-States Circuits Magazine - Summer 2018 - 80
IEEE Solid-States Circuits Magazine - Summer 2018 - 81
IEEE Solid-States Circuits Magazine - Summer 2018 - 82
IEEE Solid-States Circuits Magazine - Summer 2018 - 83
IEEE Solid-States Circuits Magazine - Summer 2018 - 84
IEEE Solid-States Circuits Magazine - Summer 2018 - 85
IEEE Solid-States Circuits Magazine - Summer 2018 - 86
IEEE Solid-States Circuits Magazine - Summer 2018 - 87
IEEE Solid-States Circuits Magazine - Summer 2018 - 88
IEEE Solid-States Circuits Magazine - Summer 2018 - 89
IEEE Solid-States Circuits Magazine - Summer 2018 - 90
IEEE Solid-States Circuits Magazine - Summer 2018 - 91
IEEE Solid-States Circuits Magazine - Summer 2018 - 92
IEEE Solid-States Circuits Magazine - Summer 2018 - 93
IEEE Solid-States Circuits Magazine - Summer 2018 - 94
IEEE Solid-States Circuits Magazine - Summer 2018 - 95
IEEE Solid-States Circuits Magazine - Summer 2018 - 96
IEEE Solid-States Circuits Magazine - Summer 2018 - 97
IEEE Solid-States Circuits Magazine - Summer 2018 - 98
IEEE Solid-States Circuits Magazine - Summer 2018 - 99
IEEE Solid-States Circuits Magazine - Summer 2018 - 100
IEEE Solid-States Circuits Magazine - Summer 2018 - 101
IEEE Solid-States Circuits Magazine - Summer 2018 - 102
IEEE Solid-States Circuits Magazine - Summer 2018 - 103
IEEE Solid-States Circuits Magazine - Summer 2018 - 104
IEEE Solid-States Circuits Magazine - Summer 2018 - 105
IEEE Solid-States Circuits Magazine - Summer 2018 - 106
IEEE Solid-States Circuits Magazine - Summer 2018 - 107
IEEE Solid-States Circuits Magazine - Summer 2018 - 108
IEEE Solid-States Circuits Magazine - Summer 2018 - Cover3
IEEE Solid-States Circuits Magazine - Summer 2018 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com