IEEE Solid-States Circuits Magazine - Fall 2019 - 41

[79] D. H. Hubel, "Tungsten microelectrode
for recording from single units," Science,
vol. 125, no. 3247, pp. 549-550, 1957.
[80] M. Hajj Hassan, V. Chodavarapu, and S.
Musallam, "NeuroMEMS: Neural probe
microtechnologies," Sensors, vol. 8, no.
10, pp. 6704-6726, 2008.
[81] L. Luan et al., "Ultraflexible nanoelectronic probes form reliable, glial scarfree neural integration," Sci. Adv., vol. 3,
no. 2, 2017. doi: 10.1126/sciadv.1601966.
[82] J. Liu et al., "Syringe-injectable electronics," Nat. Nanotechnol., vol. 10, no. 7, pp.
629-636, 2015.
[83] A. S. Pranti, A. Schander, A. Bödecker,
and W. Lang, "Highly stable PEDOT:PSS
coating on gold microelectrodes with
improved charge injection capacity for
chronic neural stimulation," Eurosensors, vol. 1, no. 4, p. 492, 2017.
[84] J. J. Jun et al., "Fully integrated silicon
probes for high-density recording of
neural activity," Nature, vol. 551, no. 7679,
pp. 232-236, 2017.
[85] G. Rios, E. V. Lubenov, D. Chi, M. L. Roukes,
and A. G. Siapas, "Nanofabricated neural
probes for dense 3-D recordings of brain
activity," Nano Lett., vol. 16, no. 11, pp.
6857-6862, 2016.
[86] J. E. Chung et al., "High-density, longlasting, and multi-region electrophysiological recordings using polymer electrode arrays," Neuron, vol. 101, no. 1, pp.
21-31, 2019.
[87] H. D. Mercer and R. L. White, "Photolithographic fabrication and physiological
performance of microelectrode arrays
for neural stimulation," IEEE Trans.
Biomed. Eng., vol. BME-25, no. 6, pp.
494-500, 1978.
[88] A. C. Hoogerwerf and K. D. Wise, "A
three-dimensional neural recording array," in Proc. Int. Conf. Solid-State Sensors, Actuators and Microsystems Dig.
Tech. Papers, 1991, pp. 120-123.
[89] A. C. Hoogerwerf and K. D. Wise, "A
three-dimensional microelectrode array for chronic neural recording," IEEE
Trans. Biomed. Eng., vol. 41, no. 12, pp.
1136-1146, 1994.
[90] G. T. A. Kovacs et al., "Silicon-substrate
microelectrode arrays for parallel recording of neural activity in peripheral
and cranial nerves," IEEE Trans. Biomed.
Eng., vol. 41, no. 6, pp. 567-577, 1994.
[91] E. M. Maynard, C. T. Nordhausen, and
R. A. Normann, "The Utah intracortical
electrode array: a recording structure
for potential brain-computer interfaces,"
Electroencephalogr. Clin. Neurophysiol.,
vol. 102, no. 3, pp. 228-239, 1997.
[92] Q. Bai and K. D. Wise, "Single-unit neural recordings using active microelectrodes," in Proc. IEEE Annu. Int. Conf. Engineering Medical Biology Society, 1998,
pp. 1826-1829,
[93] T. Akin, B. Ziaie, S. A. Nikles, and K. Najafi, "A modular micromachined highdensity connector system for biomedical applications," IEEE Trans. Biomed.
Eng., vol. 46, no. 4, pp. 471-480, 1999.
[94] Q. Bai, K. D. Wise, and D. J. Anderson, "A
high-yield microassembly structure for
three-dimensional microelectrode arrays," IEEE Trans. Biomed. Eng., vol. 47,
no. 3, pp. 281-289, 2000.
[95] T. J. Blanche, M. A. Spacek, J. F. Hetke,
and N. V. Swindale, "Polytrodes: Highdensity silicon electrode arrays for
large-scale multiunit recording," J. Neurophysiol., vol. 93, no. 5, pp. 2987-3000,
2005.
[96] J. E. Ferguson, C. Boldt, and A. D. Redish,
"Creating low-impedance tetrodes by

electroplating with additives," Sensors
Actuators A: Phys., vol. 156, no. 2, pp.
388-393, 2009.
[97] G. N. Angotzi, and L. Berdondini, "A lowpower, low-area modular architecture
for high density neural probes," in Proc.
7th Int. IEEE/EMBS Conf. Neural Engineering (NER), 2015, pp. 521-524.
[98] A. S. Herbawi et al., "CMOS-based neural
probe with enhanced electronic depth
control," in Proc. 18th Int. Conf. SolidState Sensors, Actuators and Microsystems (TRANSDUCERS), 2015, pp. 1723-
1726.
[99] L. Hoffman et al., "High-density optrodeelectrode neural probe using Si xNy photonics for in vivo optogenetics," in Proc.
IEEE Int. Electron Devices Meeting (IEDM),
2015, pp. 29.5.1-29.5.4. doi: 10.1109/
iedm.2015.7409795.
[100] J. Liu et al., "Syringe-injectable electronics," Nat. Nanotechnol., vol. 10, no. 7, pp.
629-636, 2015.
[101] J. L. Shobe, L. D. Claar, S. Parhami, K. I.
Bakhurin, and S. C. Masmanidis, "Brain
activity mapping at multiple scales with
silicon microprobes containing 1,024
electrodes," J. Neurophysiol., vol. 114,
no. 3, pp. 2043-2052, 2015.
[102] J. Scholvin et al., "Close-packed silicon
microelectrodes for scalable spatially
oversampled neural recording," IEEE
Trans. Biomed. Eng., vol. 63, no. 1, pp.
120-130, 2016.
[103] Z. Jiang et al., "TaiNi: maximizing research output whilst improving animals'
welfare in neurophysiolog y experiments," Scientific Rep., vol. 7, no. 1, pp.
8086-8097, 2017.
[104] Z. Ahmed, J. W. Reddy, T. Teichert, and
M. Chamanzar, "High-densit y steeltrodes: A novel platform for high resolution recording in primates," in Proc. 9th
Int. IEEE/EMBS Conf. Neural Engineering
(NER), 2019, pp. 835-838.
[105] M. E. Spira and A. Hai, "Multi-electrode
array technologies for neuroscience and
cardiology," Nat. Nanotechnol., vol. 8,
no. 2, pp. 83-94, 2013.
[106] G. H. Kim et al., "Recent progress on microelectrodes in neural interfaces," Materials,
vol. 11, no. 10, pp. 1995-2020, 2018.
[107] Y. Nam and B. C. Wheeler, "In vitro microelectrode array technology and neural recordings," Crit. Rev. Biomed. Eng.,
vol. 39, no. 1, pp. 45-62, 2011.
[108] K. D. Wise, J. B. Angell, and A. Starr, "An
integrated-circuit approach to extracellular microelectrodes," IEEE Trans.
Biomed. Eng., vol. BME-17, no. 3, pp. 238-
247, 1970.
[109] A. Starr, K. D. Wise, and J. Csongradi,
"An evaluation of photoengraved microelectrodes for extracellular single-unit
recording," IEEE Trans. Biomed. Eng., vol.
BME-20, no. 4, pp. 291-293, 1973.
[110] S. L. Bement, K. D. Wise, D. J. Anderson,
K. Najafi, and K. L. Drake, "Solid-state
electrodes for multichannel multiplexed
intracortical neuronal recording," IEEE
Trans. Biomed. Eng., vol. BME-33, no. 2,
pp. 230-241, 1986.
[111] J. L. Novak and B. C. Wheeler, "Multisite
hippocampal slice recording and stimulation using a 32 element microelectrode
array," J. Neurosci. Methods, vol. 23, no.
2, pp. 149-159, 1988.
[112] M. Janders, U. Egert, M. Stelzle, and W.
Nisch, "Novel thin film titanium nitride
micro-electrodes with excellent charge
transfer capability for cell stimulation
and sensing applications," in Proc. IEEE
Annu. Int. Conf. Engineering Medical Biology Society, 1996, pp. 245-247.

[113] J. J. Pancrazio et al., "Description and
demonstration of a CMOS a mpl if ier based-system with measurement and
stimulation capability for bioelectrical
signal transduction," Biosensors Bioelectron., vol. 13, no. 9, pp. 971-979, 1998.
[114] Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, and H. P. C. Robinson, "A system for
MEA-based multisite stimulation," IEEE
Trans. Biomed. Eng., vol. 50, no. 2, pp.
241-248, 2003.
[115] L. Berdondini et al., "High-density electrode array for imaging in vitro electrophysiological activity," Biosensors Bioelectron., vol. 21, no. 1, pp. 167-174, 2005.
[116] K. Mathieson et al., "Large-area microelectrode arrays for recording of neural
signals," IEEE Trans. Nucl. Sci., vol. 51,
no. 5, pp. 2027-2031, 2004.
[117] Y. Nam, B. C. Wheeler, and M. O. Heuschkel, "Neural recording and stimulation
of dissociated hippocampal cultures using microfabricated three-dimensional
tip electrode array," J. Neurosci. Methods, vol. 155, no. 2, pp. 296-299, 2006.
[118] S. Gawad et al., "Substrate arrays of iridium oxide microelectrodes for in vitro
neuronal interfacing," Front. Neuroeng.,
vol. 2, pp. 1-6, Jan. 2009.
[119] M. Heim et al., "Combined macro-/mesoporous microelectrode arrays for lownoise extracellular recording of neural
networks," J. Neurophysiol., vol. 108, no.
6, pp. 1793-1803, 2012.
[120] Y. H. Kim, G. H. Kim, A. Y. Kim, Y. H. Han,
M.-A. Chung, and S.-D. Jung, "In vitro extracellular recording and stimulation performance of nanoporous gold-modified
multi-electrode arrays," J. Neural Eng.,
vol. 12, no. 6, 2015. doi: 10.1088/17412560/12/6/066029.
[121] R. Vardi, A. Goldental, S. Sardi, A. Sheinin,
and I. Kanter, "Simultaneous multi-patchclamp and extracellular-array recordings:
Single neuron reflects network activity," Scientific Rep., vol. 6, Nov. 2016. doi:
10.1038/srep36228.
[122] F. Zhang, J. Holleman, and B. P. Otis,
"Design of ultra-low power biopotential
amplifiers for biosignal acquisition applications," IEEE Trans. Biomed. Circuits
Syst., vol. 6, no. 4, pp. 344-355, 2012.
[123] D. Han, Y. Zheng, R. Rajkumar, G. Dawe,
and M. Je, "A 0.45V 100-channel neuralrecording IC with sub-µW/channel consumption in 0.18 µm CMOS," in Proc. IEEE
Int. Solid-State Circuits Conf. Dig. Tech.
Papers, 2013, pp. 290-291.
[124] Y.-P. Chen, D. Blaauw, and D. Sylvester,
"A 266 nW multi-chopper amplifier with
1.38 noise efficiency factor for neural
signal recording," in Proc. IEEE Symp.
VLSI Circuits Dig. Tech. Papers, 2014, pp.
1-2. doi: 10.1109/vlsic.2014.6858431.
[125] R. Muller, S. Gambini, and J. M. Rabaey,
"A 0.013 mm2, 5 µW DC-coupled neural
signal acquisition IC with 0.5 V supply,"
IEEE J. Solid-State Circuits, vol. 47, no. 1,
pp. 232-243, 2012.
[126] M. Nekoui, A. M. Sodagar, and M. Ehsanian, "Area-efficient single-stage configuration for implantable neural recording
amplifiers based on back attenuation,"
in Proc. IEEE Biomedical Circuits Syst.
Conf., 2014, pp. 396-399.
[127] A. Bahr, L. A. Saleh, R. Hinsch, D. Schroeder, D. Isbrandt, and W. H. Krautschneider, "Small area, low power neural recording integrated circuit in 130 nm
CMOS technology for small mammalians," in Proc. Int. Conf. Microelectronics,
2016, pp. 349-352.
[128] K. Sooksood, E. Noorsal, J. Becker, and
M. Ortmanns, "A neural stimulator front-end

IEEE SOLID-STATE CIRCUITS MAGAZINE

FA L L 2 0 19

41



IEEE Solid-States Circuits Magazine - Fall 2019

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2019

Contents
IEEE Solid-States Circuits Magazine - Fall 2019 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2019 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2019 - Contents
IEEE Solid-States Circuits Magazine - Fall 2019 - 2
IEEE Solid-States Circuits Magazine - Fall 2019 - 3
IEEE Solid-States Circuits Magazine - Fall 2019 - 4
IEEE Solid-States Circuits Magazine - Fall 2019 - 5
IEEE Solid-States Circuits Magazine - Fall 2019 - 6
IEEE Solid-States Circuits Magazine - Fall 2019 - 7
IEEE Solid-States Circuits Magazine - Fall 2019 - 8
IEEE Solid-States Circuits Magazine - Fall 2019 - 9
IEEE Solid-States Circuits Magazine - Fall 2019 - 10
IEEE Solid-States Circuits Magazine - Fall 2019 - 11
IEEE Solid-States Circuits Magazine - Fall 2019 - 12
IEEE Solid-States Circuits Magazine - Fall 2019 - 13
IEEE Solid-States Circuits Magazine - Fall 2019 - 14
IEEE Solid-States Circuits Magazine - Fall 2019 - 15
IEEE Solid-States Circuits Magazine - Fall 2019 - 16
IEEE Solid-States Circuits Magazine - Fall 2019 - 17
IEEE Solid-States Circuits Magazine - Fall 2019 - 18
IEEE Solid-States Circuits Magazine - Fall 2019 - 19
IEEE Solid-States Circuits Magazine - Fall 2019 - 20
IEEE Solid-States Circuits Magazine - Fall 2019 - 21
IEEE Solid-States Circuits Magazine - Fall 2019 - 22
IEEE Solid-States Circuits Magazine - Fall 2019 - 23
IEEE Solid-States Circuits Magazine - Fall 2019 - 24
IEEE Solid-States Circuits Magazine - Fall 2019 - 25
IEEE Solid-States Circuits Magazine - Fall 2019 - 26
IEEE Solid-States Circuits Magazine - Fall 2019 - 27
IEEE Solid-States Circuits Magazine - Fall 2019 - 28
IEEE Solid-States Circuits Magazine - Fall 2019 - 29
IEEE Solid-States Circuits Magazine - Fall 2019 - 30
IEEE Solid-States Circuits Magazine - Fall 2019 - 31
IEEE Solid-States Circuits Magazine - Fall 2019 - 32
IEEE Solid-States Circuits Magazine - Fall 2019 - 33
IEEE Solid-States Circuits Magazine - Fall 2019 - 34
IEEE Solid-States Circuits Magazine - Fall 2019 - 35
IEEE Solid-States Circuits Magazine - Fall 2019 - 36
IEEE Solid-States Circuits Magazine - Fall 2019 - 37
IEEE Solid-States Circuits Magazine - Fall 2019 - 38
IEEE Solid-States Circuits Magazine - Fall 2019 - 39
IEEE Solid-States Circuits Magazine - Fall 2019 - 40
IEEE Solid-States Circuits Magazine - Fall 2019 - 41
IEEE Solid-States Circuits Magazine - Fall 2019 - 42
IEEE Solid-States Circuits Magazine - Fall 2019 - 43
IEEE Solid-States Circuits Magazine - Fall 2019 - 44
IEEE Solid-States Circuits Magazine - Fall 2019 - 45
IEEE Solid-States Circuits Magazine - Fall 2019 - 46
IEEE Solid-States Circuits Magazine - Fall 2019 - 47
IEEE Solid-States Circuits Magazine - Fall 2019 - 48
IEEE Solid-States Circuits Magazine - Fall 2019 - 49
IEEE Solid-States Circuits Magazine - Fall 2019 - 50
IEEE Solid-States Circuits Magazine - Fall 2019 - 51
IEEE Solid-States Circuits Magazine - Fall 2019 - 52
IEEE Solid-States Circuits Magazine - Fall 2019 - 53
IEEE Solid-States Circuits Magazine - Fall 2019 - 54
IEEE Solid-States Circuits Magazine - Fall 2019 - 55
IEEE Solid-States Circuits Magazine - Fall 2019 - 56
IEEE Solid-States Circuits Magazine - Fall 2019 - 57
IEEE Solid-States Circuits Magazine - Fall 2019 - 58
IEEE Solid-States Circuits Magazine - Fall 2019 - 59
IEEE Solid-States Circuits Magazine - Fall 2019 - 60
IEEE Solid-States Circuits Magazine - Fall 2019 - 61
IEEE Solid-States Circuits Magazine - Fall 2019 - 62
IEEE Solid-States Circuits Magazine - Fall 2019 - 63
IEEE Solid-States Circuits Magazine - Fall 2019 - 64
IEEE Solid-States Circuits Magazine - Fall 2019 - 65
IEEE Solid-States Circuits Magazine - Fall 2019 - 66
IEEE Solid-States Circuits Magazine - Fall 2019 - 67
IEEE Solid-States Circuits Magazine - Fall 2019 - 68
IEEE Solid-States Circuits Magazine - Fall 2019 - 69
IEEE Solid-States Circuits Magazine - Fall 2019 - 70
IEEE Solid-States Circuits Magazine - Fall 2019 - 71
IEEE Solid-States Circuits Magazine - Fall 2019 - 72
IEEE Solid-States Circuits Magazine - Fall 2019 - 73
IEEE Solid-States Circuits Magazine - Fall 2019 - 74
IEEE Solid-States Circuits Magazine - Fall 2019 - 75
IEEE Solid-States Circuits Magazine - Fall 2019 - 76
IEEE Solid-States Circuits Magazine - Fall 2019 - 77
IEEE Solid-States Circuits Magazine - Fall 2019 - 78
IEEE Solid-States Circuits Magazine - Fall 2019 - 79
IEEE Solid-States Circuits Magazine - Fall 2019 - 80
IEEE Solid-States Circuits Magazine - Fall 2019 - 81
IEEE Solid-States Circuits Magazine - Fall 2019 - 82
IEEE Solid-States Circuits Magazine - Fall 2019 - 83
IEEE Solid-States Circuits Magazine - Fall 2019 - 84
IEEE Solid-States Circuits Magazine - Fall 2019 - 85
IEEE Solid-States Circuits Magazine - Fall 2019 - 86
IEEE Solid-States Circuits Magazine - Fall 2019 - 87
IEEE Solid-States Circuits Magazine - Fall 2019 - 88
IEEE Solid-States Circuits Magazine - Fall 2019 - 89
IEEE Solid-States Circuits Magazine - Fall 2019 - 90
IEEE Solid-States Circuits Magazine - Fall 2019 - 91
IEEE Solid-States Circuits Magazine - Fall 2019 - 92
IEEE Solid-States Circuits Magazine - Fall 2019 - 93
IEEE Solid-States Circuits Magazine - Fall 2019 - 94
IEEE Solid-States Circuits Magazine - Fall 2019 - 95
IEEE Solid-States Circuits Magazine - Fall 2019 - 96
IEEE Solid-States Circuits Magazine - Fall 2019 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2019 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com