IEEE Solid-States Circuits Magazine - Fall 2020 - 30

■■

■■

Using harmonic-based signal generation and signal processing further dramatically deteriorates the
performance degradation rate versus frequency, worsening as the
harmonic order increases. Hence,
it is more effective to deploy a THz
electronic system based on a lower
harmonic order, preferably on the
fundamental frequency.
Simpler architectures with minimal
signal processing and more powerefficient modulation schemes are
more favorable than complex and
power-hungry designs.

[3]	

[4]	

[5]	

[6]	

Conclusions
Sub-THz/THz interconnects hold
the potential to complement EIs and
OIs by addressing the communication distances for which the EI and
OI face fundamental challenges.
The past decade has seen the development of sub-THz/THz circuits
and systems, and active component
advances are especially exciting,
such as signal generation and modulation schemes that have high power
and efficiency and low-noise receivers and clock synthesizers with
increasing frequencies. However,
due to the strict energy efficiency
requirement for interconnects, it
is critical to maximize efficiency
instead of targeting signal power
and NF performance when tradeoffs
exist. The system output power and
noise performance can be improved
through other means, such as the
architecture-level array configuration. To ultimately materialize the
sub-THz/THz iInterconnect, passive
channel developments are the other
key. Channel attention is crucial to
extend the maximum reachable distance. However, channel dispersion,
including the interface bandwidth
specification, is the limiting factor
for the maximum achievable bandwidth up to a few meters.

References

FA L L 2 0 2 0	

[8]	

[9]	

[10]	

[11]	

[12]	

[13]	

[14]	

[15]	

[1]	 H. Sutter, " The free lunch is over: A
fundamental turn toward concurrency
in software. " Accessed: Mar. 2005. [Online]. Available: http://www.gotw.ca/
publications/concurrency-ddj.htm
[2]	 " Cisco visual networking index: Forecast
and methodology, 2016-2021, " San Jose,

30	

[7]	

[16]	

CA, Cisco, White Paper, June 2017. [Online]. Available: https://www.reinvention
.be/webhdfs/v1/docs/complete-white
-paper-c11-481360.pdf
N. Hosseinzadeh, K. Fang, L. Valenzuela, C. Schow, and J. F. Buckwalter, " A
50-Gb/s optical transmitter based on codesign of a 45-nm CMOS SOI distributed
driver and 90-nm silicon photonic MachZehnder modulator, " in Proc. 2020 IEEE
Int. Microw. Symp. (IMS).
M. Horowitz, " Computing's energy problem: And what we can do about it, " in
Proc. 2014 IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers (ISSCC), pp. 10-
14. doi: 10.1109/ISSCC.2014.6757323.
A. V. Krishnamoorthy et al., " From chip
to cloud: Optical interconnects in engineered systems, " J. Lightw. Technol.,
vol. 35, no. 15, pp. 3103-3115, 2017. doi:
10.1109/JLT.2016.2642822.
K.-H. L. Loh, " 1.2 Fertilizing AIoT from
roots to leaves, " in Proc. 2020 IEEE Int.
Solid-State Circuits Conf. (ISSCC), pp.
15-21. doi: 10.1109/ISSCC19947.2020.
9062950.
T. Ali et al., " 6.2 A 460mW 112Gb/s DSPbased transceiver with 38dB loss compensation for next-generation data centers in 7nm FinFET technology, " in Proc.
2020 IEEE Int. Solid-State Circuits Conf.
(ISSCC), pp. 118-120. doi: 10.1109/ISSCC
19947.2020.9062925.
Z. Xu, H. Shin, J. Kim, M. F. Chang, and
C. Chien, " Giga bit/s CDMA-interconnect
transceiver chip-set with multilevel signal data recovery for re-configurable
VLSI system, " in Proc. 2003 IEEE Int. Solid-State Circuits Conf. (ISSCC), pp. 82-83.
J. Ko, J. Kim, Z. Xu, Q. Gu, C. Chien, and M.
F. Chang, " An RF/baseband FDMA-interconnect transceiver for reconfigurable
multiple access chip-to-chip communication, " in Proc. 2005 IEEE Int. Solid-State
Circuits Conf. (ISSCC), pp. 338-602. doi:
10.1109/ISSCC.2005.1494007.
M. F. Chang et al., " Advanced RF/baseband interconnect schemes for interand intra-ULSI communications, " IEEE
Trans. Electron. Devices, vol. 52, no. 7,
pp. 1271-1285, July 2005. doi: 10.1109/
TED.2005.850699.
R. Mahajan et al., " Embedded multi-die
interconnect bridge (EMIB)-A high density, high bandwidth packaging interconnect, " in Proc. 2016 IEEE 66th Electron. Compon. Technol. Conf. (ECTC), pp.
557-565. doi: 10.1109/ECTC.2016.201.
T. Coughlin, " Chiplets for all, " Forbes.
com. Accessed: May 2019. [Online].
Available: https://w w w.forbes.com/
sites/tomcoughlin/2019/05/11/chiplets
-for-all
" Photonics in the package for -
extreme
scalability (PIPES), " DARPA, -A rlington,
VA, 2018. [Online]. Available: https://
w w w.darpa.mil/prog ram/photonics
-in-the-package-for-extreme-scalability
#:~:text=Dr.&text=The%20Photonics%
20in %20t he %20P ack a ge, g a ins %20
t h r o ug h % 20 p a r a l le l ism % 20 a n d % 20
modularity
Q. J. Gu, " THz interconnect: The last centimeter communication, " IEEE Commun.
Mag., vol. 53, no. 4, pp. 206-215, 2015.
doi: 10.1109/MCOM.2015.7081096.
Q. J. Gu, " Integrated circuits and systems
for THz interconnect, " in Proc. 2015 IEEE
16th Annu. Wireless Microw. Technol.
Conf. (WAMICON), pp. 1-5. doi: 10.1109/
WAMICON.2015.7120432.
T. Norimatsu et al., " 3.3 A 25Gb/s multistandard serial link transceiver for
50dB-loss copper cable in 28nm CMOS, "

IEEE SOLID-STATE CIRCUITS MAGAZINE	

in Proc. 2016 IEEE Int. Solid-State Circuits
Conf. (ISSCC), pp. 60-61. doi: 10.1109/
ISSCC.2016.7417906.
[17]	 Y. Ye, B. Yu, X. Ding, X. Liu, and Q. J.
Gu, " High energy-efficiency high bandwidth-density sub-THz interconnect for
the 'Last-Centimeter' chip-to-chip communications, " in Proc. 2017 IEEE MTT-S
Int. Microw. Symp. (IMS), pp. 805-808.
doi: 10.1109/MWSYM.2017.8058699.
[18]	 M.-A. LaCroix et al., " 6.2 A 60Gb/s PAM4 ADC-DSP transceiver in 7nm CMOS
with SNR-based adaptive power scaling achieving 6.9pJ/b at 32dB loss, " in
Proc. 2019 IEEE Int. Solid-State Circuits
Conf. (ISSCC), pp. 114-116. doi: 10.1109/
ISSCC.2019.8662322.
[19]	 M. Pisati et al., " 6.3 A sub-250mW 1-to56Gb/s continuous-range PAM-4 42.5dB
IL ADC/DAC-based transceiver in 7nm
FinFET, " in Proc. 2019 IEEE Int. SolidState Circuits Conf. (ISSCC), pp. 116-118.
doi: 10.1109/ISSCC.2019.8662428.
[20]	 E. Groen et al., " 6.3 A 10-to-112Gb/s DSPDAC-based transmitter with 1.2Vppd
output swing in 7nm FinFET, " in Proc.
2020 IEEE Int. Solid-State Circuits Conf.
(ISSCC), pp. 120-122. doi: 10.1109/ISSCC19947.2020.9063130.
[21]	 H. D. Thacker et al., " An all-solid-state,
WDM silicon photonic digital link for
chip-to-chip communications, " Opt. Express, vol. 23, no. 10, pp. 12,808-12,822,
2015. doi: 10.1364/OE.23.012808.
[22]	 R. Meade et al., " TeraPHY: A high-density
electronic-photonic chiplet for optical
I/O from a multi-chip module, " presented at the Optical Fiber Communications
Conference and Exhibition (OFC), San Diego, CA, Mar. 3-7, 2019.
[23]	 R. Dokania et al., " 10.5 A 5.9pJ/b 10Gb/s
serial link with unequalized MM-CDR in
14nm tri-gate CMOS, " in Proc. 2015 IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, pp. 1-3. doi: 10.1109/ISSCC.2015.7062987.
[24]	 C. Yeh, F. Shimabukuro, and P. H. Siegel,
" Low-loss terahertz ribbon waveguides, "
Appl. Opt., vol. 44, no. 28, pp. 5937-5946,
2005. doi: 10.1364/AO.44.005937.
[25]	 R. Mendis and D. Grischkowsky, " Plastic
ribbon THz waveguides, " J. Appl. Phys.,
vol. 88, no. 7, pp. 4449-4451, Oct. 2000.
doi: 10.1063/1.1310179.
[26]	 B. Ung, A. Mazhorova, M. Rozé, A. Dupuis, and M. Skorobogatiy, " Plastic fibers
for terahertz wave guiding, " presented
at the 37th European Conference and
Exhibition on Optical Communication,
Geneva, Sept. 18-22, 2011.
[27]	 K. Wang and D. M. Mittleman, " Metal
wires for terahertz wave guiding, " Nature, vol. 432, no. 7015, pp. 376-379,
Nov. 2004. doi: 10.1038/nature03040.
[28]	 L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu,
and C.-K. Sun, " Low-loss sub-wavelength
plastic fiber for terahertz waveguiding, "
Opt. Lett., vol. 31, no. 3, p. 308, 2006.
doi: 10.1364/OL.31.000308.
[29]	 H. Song, H. Jin, and H.-M. Bae, " Plastic
straw: Future of high-speed signaling, "
Sci. Rep., vol. 5, p. 16,062, Nov. 2015. doi:
10.1038/srep16062.
[30]	 J. W. Holloway, G. C. Dogiamis, and R.
Han, " Innovations in terahertz interconnects, " IEEE Microw. Mag., vol. 21, no.
1, pp. 35-50. Jan. 2020. doi: 10.1109/
MMM.2019.2945139.
[31]	 F. Voineau et al., " A 12 Gb/s 64QAM and
OFDM Compatible Millimeter-Wave Communication Link Using a Novel Plastic
Waveguide Design, " in Proc. 2018 IEEE
Radio Wireless Symp. (RWS), pp. 250-252.
doi: 10.1109/RWS.2018.8305001.


https://www.reinvention.be/webhdfs/v1/docs/complete-white-paper-c11-481360.pdf https://www.reinvention.be/webhdfs/v1/docs/complete-white-paper-c11-481360.pdf https://www.reinvention.be/webhdfs/v1/docs/complete-white-paper-c11-481360.pdf https://www.forbes.com/sites/tomcoughlin/2019/05/11/chiplets-for-all https://www.forbes.com/sites/tomcoughlin/2019/05/11/chiplets-for-all https://www.forbes.com/sites/tomcoughlin/2019/05/11/chiplets-for-all https://www.darpa.mil/program/photonics-in-the-package-for-extreme-scalability#:~:text=Dr.&text=The%20Photonics%20in%20the%20Package https://www.darpa.mil/program/photonics-in-the-package-for-extreme-scalability#:~:text=Dr.&text=The%20Photonics%20in%20the%20Package https://www.darpa.mil/program/photonics-in-the-package-for-extreme-scalability#:~:text=Dr.&text=The%20Photonics%20in%20the%20Package https://www.darpa.mil/program/photonics-in-the-package-for-extreme-scalability#:~:text=Dr.&text=The%20Photonics%20in%20the%20Package https://www.darpa.mil/program/photonics-in-the-package-for-extreme-scalability#:~:text=Dr.&text=The%20Photonics%20in%20the%20Package http://www.gotw.ca/publications/concurrency-ddj.htm http://www.gotw.ca/publications/concurrency-ddj.htm

IEEE Solid-States Circuits Magazine - Fall 2020

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2020

Contents
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2020 - Contents
IEEE Solid-States Circuits Magazine - Fall 2020 - 2
IEEE Solid-States Circuits Magazine - Fall 2020 - 3
IEEE Solid-States Circuits Magazine - Fall 2020 - 4
IEEE Solid-States Circuits Magazine - Fall 2020 - 5
IEEE Solid-States Circuits Magazine - Fall 2020 - 6
IEEE Solid-States Circuits Magazine - Fall 2020 - 7
IEEE Solid-States Circuits Magazine - Fall 2020 - 8
IEEE Solid-States Circuits Magazine - Fall 2020 - 9
IEEE Solid-States Circuits Magazine - Fall 2020 - 10
IEEE Solid-States Circuits Magazine - Fall 2020 - 11
IEEE Solid-States Circuits Magazine - Fall 2020 - 12
IEEE Solid-States Circuits Magazine - Fall 2020 - 13
IEEE Solid-States Circuits Magazine - Fall 2020 - 14
IEEE Solid-States Circuits Magazine - Fall 2020 - 15
IEEE Solid-States Circuits Magazine - Fall 2020 - 16
IEEE Solid-States Circuits Magazine - Fall 2020 - 17
IEEE Solid-States Circuits Magazine - Fall 2020 - 18
IEEE Solid-States Circuits Magazine - Fall 2020 - 19
IEEE Solid-States Circuits Magazine - Fall 2020 - 20
IEEE Solid-States Circuits Magazine - Fall 2020 - 21
IEEE Solid-States Circuits Magazine - Fall 2020 - 22
IEEE Solid-States Circuits Magazine - Fall 2020 - 23
IEEE Solid-States Circuits Magazine - Fall 2020 - 24
IEEE Solid-States Circuits Magazine - Fall 2020 - 25
IEEE Solid-States Circuits Magazine - Fall 2020 - 26
IEEE Solid-States Circuits Magazine - Fall 2020 - 27
IEEE Solid-States Circuits Magazine - Fall 2020 - 28
IEEE Solid-States Circuits Magazine - Fall 2020 - 29
IEEE Solid-States Circuits Magazine - Fall 2020 - 30
IEEE Solid-States Circuits Magazine - Fall 2020 - 31
IEEE Solid-States Circuits Magazine - Fall 2020 - 32
IEEE Solid-States Circuits Magazine - Fall 2020 - 33
IEEE Solid-States Circuits Magazine - Fall 2020 - 34
IEEE Solid-States Circuits Magazine - Fall 2020 - 35
IEEE Solid-States Circuits Magazine - Fall 2020 - 36
IEEE Solid-States Circuits Magazine - Fall 2020 - 37
IEEE Solid-States Circuits Magazine - Fall 2020 - 38
IEEE Solid-States Circuits Magazine - Fall 2020 - 39
IEEE Solid-States Circuits Magazine - Fall 2020 - 40
IEEE Solid-States Circuits Magazine - Fall 2020 - 41
IEEE Solid-States Circuits Magazine - Fall 2020 - 42
IEEE Solid-States Circuits Magazine - Fall 2020 - 43
IEEE Solid-States Circuits Magazine - Fall 2020 - 44
IEEE Solid-States Circuits Magazine - Fall 2020 - 45
IEEE Solid-States Circuits Magazine - Fall 2020 - 46
IEEE Solid-States Circuits Magazine - Fall 2020 - 47
IEEE Solid-States Circuits Magazine - Fall 2020 - 48
IEEE Solid-States Circuits Magazine - Fall 2020 - 49
IEEE Solid-States Circuits Magazine - Fall 2020 - 50
IEEE Solid-States Circuits Magazine - Fall 2020 - 51
IEEE Solid-States Circuits Magazine - Fall 2020 - 52
IEEE Solid-States Circuits Magazine - Fall 2020 - 53
IEEE Solid-States Circuits Magazine - Fall 2020 - 54
IEEE Solid-States Circuits Magazine - Fall 2020 - 55
IEEE Solid-States Circuits Magazine - Fall 2020 - 56
IEEE Solid-States Circuits Magazine - Fall 2020 - 57
IEEE Solid-States Circuits Magazine - Fall 2020 - 58
IEEE Solid-States Circuits Magazine - Fall 2020 - 59
IEEE Solid-States Circuits Magazine - Fall 2020 - 60
IEEE Solid-States Circuits Magazine - Fall 2020 - 61
IEEE Solid-States Circuits Magazine - Fall 2020 - 62
IEEE Solid-States Circuits Magazine - Fall 2020 - 63
IEEE Solid-States Circuits Magazine - Fall 2020 - 64
IEEE Solid-States Circuits Magazine - Fall 2020 - 65
IEEE Solid-States Circuits Magazine - Fall 2020 - 66
IEEE Solid-States Circuits Magazine - Fall 2020 - 67
IEEE Solid-States Circuits Magazine - Fall 2020 - 68
IEEE Solid-States Circuits Magazine - Fall 2020 - 69
IEEE Solid-States Circuits Magazine - Fall 2020 - 70
IEEE Solid-States Circuits Magazine - Fall 2020 - 71
IEEE Solid-States Circuits Magazine - Fall 2020 - 72
IEEE Solid-States Circuits Magazine - Fall 2020 - 73
IEEE Solid-States Circuits Magazine - Fall 2020 - 74
IEEE Solid-States Circuits Magazine - Fall 2020 - 75
IEEE Solid-States Circuits Magazine - Fall 2020 - 76
IEEE Solid-States Circuits Magazine - Fall 2020 - 77
IEEE Solid-States Circuits Magazine - Fall 2020 - 78
IEEE Solid-States Circuits Magazine - Fall 2020 - 79
IEEE Solid-States Circuits Magazine - Fall 2020 - 80
IEEE Solid-States Circuits Magazine - Fall 2020 - 81
IEEE Solid-States Circuits Magazine - Fall 2020 - 82
IEEE Solid-States Circuits Magazine - Fall 2020 - 83
IEEE Solid-States Circuits Magazine - Fall 2020 - 84
IEEE Solid-States Circuits Magazine - Fall 2020 - 85
IEEE Solid-States Circuits Magazine - Fall 2020 - 86
IEEE Solid-States Circuits Magazine - Fall 2020 - 87
IEEE Solid-States Circuits Magazine - Fall 2020 - 88
IEEE Solid-States Circuits Magazine - Fall 2020 - 89
IEEE Solid-States Circuits Magazine - Fall 2020 - 90
IEEE Solid-States Circuits Magazine - Fall 2020 - 91
IEEE Solid-States Circuits Magazine - Fall 2020 - 92
IEEE Solid-States Circuits Magazine - Fall 2020 - 93
IEEE Solid-States Circuits Magazine - Fall 2020 - 94
IEEE Solid-States Circuits Magazine - Fall 2020 - 95
IEEE Solid-States Circuits Magazine - Fall 2020 - 96
IEEE Solid-States Circuits Magazine - Fall 2020 - 97
IEEE Solid-States Circuits Magazine - Fall 2020 - 98
IEEE Solid-States Circuits Magazine - Fall 2020 - 99
IEEE Solid-States Circuits Magazine - Fall 2020 - 100
IEEE Solid-States Circuits Magazine - Fall 2020 - 101
IEEE Solid-States Circuits Magazine - Fall 2020 - 102
IEEE Solid-States Circuits Magazine - Fall 2020 - 103
IEEE Solid-States Circuits Magazine - Fall 2020 - 104
IEEE Solid-States Circuits Magazine - Fall 2020 - 105
IEEE Solid-States Circuits Magazine - Fall 2020 - 106
IEEE Solid-States Circuits Magazine - Fall 2020 - 107
IEEE Solid-States Circuits Magazine - Fall 2020 - 108
IEEE Solid-States Circuits Magazine - Fall 2020 - 109
IEEE Solid-States Circuits Magazine - Fall 2020 - 110
IEEE Solid-States Circuits Magazine - Fall 2020 - 111
IEEE Solid-States Circuits Magazine - Fall 2020 - 112
IEEE Solid-States Circuits Magazine - Fall 2020 - 113
IEEE Solid-States Circuits Magazine - Fall 2020 - 114
IEEE Solid-States Circuits Magazine - Fall 2020 - 115
IEEE Solid-States Circuits Magazine - Fall 2020 - 116
IEEE Solid-States Circuits Magazine - Fall 2020 - 117
IEEE Solid-States Circuits Magazine - Fall 2020 - 118
IEEE Solid-States Circuits Magazine - Fall 2020 - 119
IEEE Solid-States Circuits Magazine - Fall 2020 - 120
IEEE Solid-States Circuits Magazine - Fall 2020 - 121
IEEE Solid-States Circuits Magazine - Fall 2020 - 122
IEEE Solid-States Circuits Magazine - Fall 2020 - 123
IEEE Solid-States Circuits Magazine - Fall 2020 - 124
IEEE Solid-States Circuits Magazine - Fall 2020 - 125
IEEE Solid-States Circuits Magazine - Fall 2020 - 126
IEEE Solid-States Circuits Magazine - Fall 2020 - 127
IEEE Solid-States Circuits Magazine - Fall 2020 - 128
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com