IEEE Solid-States Circuits Magazine - Fall 2021 - 62

References
[1] A. L. Lacaita, C. Samori, and S. Levantino,
Integrated Frequency Synthesizers for
Wireless Systems. New York: Cambridge
Univ. Press, 2007.
[2] " Study on support of NR downlink 256
quadrature amplitude modulation (QAM)
for
frequency range 2 (FR2)
(Release
16), " 3rd Generation Partnership Project
(3GPP), Sophia, Antipolis, Tech. Rep.
38.883, July 2020.
[3] " Global update on spectrum for 4G & 5G, "
Qualcomm. Dec. 2020. https://www
.qualcomm.com/media/documents/files/
spectrum-for-4g-and-5g.pdf
[4] D. Murphy and H. Darabi, " A 27-GHz quadcore
CMOS oscillator with no mode ambiguity, "
IEEE J. Solid-State Circuits, vol.
53, no. 11, pp. 3208-3216, Nov. 2018. doi:
10.1109/JSSC.2018.2865460.
[5] F. Padovan, F. Quadrelli, M. Bassi, M.
Tiebout, and A. Bevilacqua, " A quad-core
15 GHz BiCMOS VCO with −124 dBc/Hz
phase noise at 1MHz offset, −189 dBc/
Hz FOM, and robust to multimode concurrent
oscillations, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, San Francisco, Feb. 2018,
pp. 376-378. doi: 10.1109/ISSCC.2018
.8310341.
[6] W. El-Halwagy, A. Nag, P. Hisayasu, F. Aryanfar,
P. Mousavi, and M. Hossain, " A 28GHz
quadrature fractional-N frequency
synthesizer for 5G transceivers with less
than 100-fs jitter based on cascaded PLL
architecture, " IEEE Trans. Microw. Theory
Techn., vol. 65, no. 2, pp. 396-413, Feb.
2017. doi: 10.1109/TMTT.2016.2647698.
[7] X. Liu, Z. Huang, J. Yin, and H. C. Luong,
" Magnetic-tuning millimeter-wave CMOS
oscillators, " in Proc. IEEE Custom Integr.
Circuits Conf. (CICC), Apr. 2019, pp. 1-8.
doi: 10.1109/CICC.2019.8780120.
[8] H.-C. Park et al., " A 39GHz-band CMOS
16-channel phased-array transceiver
IC
with a companion dual-stream IF transceiver
IC for 5G NR base-station applications, "
in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, San
Francisco, 2020, pp. 76-78. doi: 10.1109/
ISSCC19947.2020.9063006.
[9] B. Sadhu et al., " A 28GHz 32-element
phased-array transceiver IC with concurrent
dual polarized beams and 1.4 degree
beam-steering resolution for 5G communication, "
in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, San
Francisco, Feb. 2017, pp. 128-129. doi:
10.1109/ISSCC.2017.7870294.
[10] J. D. Dunworth et al., " A 28GHz bulk-CMOS
dual-polarization
phased-array
transceiver
with 24 channels for 5G user and
basestation equipment, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, San Francisco, Feb. 2018, pp. 70-
72. doi: 10.1109/ISSCC.2018.8310188.
[11] B. Jann et al., " A 5G sub-6GHz zero-IF and
mm-wave IF transceiver with MIMO and
carrier aggregation, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, San Francisco, Feb. 2019, pp. 352-
354. doi: 10.1109/ISSCC.2019.8662417.
[12] A. G. Roy et al., " A 37-40 GHz phased array
front-end with dual polarization for
5G MIMO beamforming applications, "
in Proc. IEEE Radio Freq. Integr. Circuits
Symp. Dig., 2019, pp. 251-254. doi:
10.1109/RFIC.2019.8701767.
[13] S. Ek et al., " A 28-nm FD-SOI 115-fs jitter
PLL-based LO system for 24-30-GHz sliding-IF
5G transceivers, " IEEE J. Solid-State
Circuits, vol. 53, no. 7, pp. 1988-2000, July
2018. doi: 10.1109/JSSC.2018.2820149.
62
FALL 2021
[14] H. Hashemi, X. Guan, A. Komijani, and A.
Hajimiri, " A 24-GHz SiGe phased-array receiver-LO
phase-shifting approach, " IEEE
Trans. Microw. Theory Techn., vol. 53, no.
2, pp. 614-626, Feb. 2005. doi: 10.1109/
TMTT.2004.841218.
[15] J. Pang et al., " A 28-GHz CMOS phasedarray
transceiver based on LO phaseshifting
architecture with gain invariant
phase tuning for 5G new radio, " IEEE
J. Solid-State Circuits, vol. 54, no. 5, pp.
1228-1242, May 2019. doi: 10.1109/
JSSC.2019.2899734.
[16] C.-W. Yao et al., " A 14-nm 0.14-psrms fractional-N
digital PLL with a 0.2-ps resolution
ADC-assisted coarse/fine-conversion
chopping TDC and TDC nonlinearity calibration, "
IEEE J. Solid-State Circuits, vol.
52, no. 12, pp. 3446-3457, Dec. 2017. doi:
10.1109/JSSC.2017.2742518.
[17] G. Vlachogiannakis et al., " A self-calibrated
fractional-N PLL for WiFi 6/802.11ax in
28nm FDSOI CMOS, " in Proc. 45th Eur. Solid-State
Circuits Conf. (ESSCIRC), Cracow,
Poland, 2019, pp. 105-108. doi: 10.1109/
ESSCIRC.2019.8902919.
[18] E. Thaller et al., " A K-band 12.1-to-16.6GHz
subsampling ADPLL with 47.3fsrms jitter
based on a stochastic flash TDC and
coupled dual-core DCO in 16nm FinFET
CMOS, " in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, San
Francisco, Feb. 2021, pp. 451-453. doi:
10.1109/ISSCC42613.2021.9365775.
[19] D. Turker et al., " A 7.4-to-14GHz PLL with
54fsrms jitter in 16nm FinFET for integrated
RF-data-converter SoCs, " in Proc.
IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, San Francisco, Feb.
2018, pp. 378-380. doi: 10.1109/ISSCC.
2018.8310342.
[20] Y. Hu et al., " A 21.7-to-26.5GHz chargesharing
locking quadrature PLL with
implicit digital
frequency-tracking loop
achieving 75fs jitter and −250dB FoM, "
in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, San Francisco,
Feb. 2020, pp. 276-278.
[21] J. Kim et al., " A 76fsrms jitter and −40 dBc
integrated-phase-noise 28-to-31GHz frequency
synthesizer based on digital subsampling
PLL using optimally spaced
voltage comparators and background
loop-gain optimization, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, San Francisco, Feb. 2019, pp. 258-
259. doi: 10.1109/ISSCC.2019.8662532.
[22] J. Gong, F. Sebastiano, E. Charbon, and
M. Babaie, " A 10-to-12 GHz 5 mW chargesampling
PLL achieving 50 fsec RMS jitter,
-258.9 dB FOM and −65 dBc reference
spur, " in Proc. IEEE Radio Freq. Integr.
Circuits Symp. Dig., 2020, pp. 15-18. doi:
10.1109/RFIC49505.2020.9218380.
[23] Z. Zhang, G. Zhu, and C. Patrick Yue, " A
0.65-V 12-16-GHz sub-sampling PLL With
56.4-fsrms integrated jitter and −256.4dB
FoM, " IEEE J. Solid-State Circuits, vol.
55, no. 6, pp. 1665-1683, June 2020. doi:
10.1109/JSSC.2020.2967562.
[24] Z. Yang, Y. Chen, S. Yang, P. Mak, and R.
P. Martins, " A 25.4-to-29.5GHz 10.2mW
isolated sub-sampling PLL achieving
-252.9dB jitter-power FoM and -63dBc reference
spur, " in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers,
San Francisco, Feb. 2019, pp. 270-272.
doi: 10.1109/ISSCC.2019.8662364.
[25] A. Santiccioli et al.,
" A 66-fs-rms jitter
12.8-to-15.2-GHz fractional-N bang-bang
PLL with digital frequency-error recovery
for fast locking, " IEEE J. Solid-State Circuits,
vol. 55, no. 12, pp. 3349-3361, Dec.
2020. doi: 10.1109/JSSC.2020.3019344.
IEEE SOLID-STATE CIRCUITS MAGAZINE
[26] W. Wu et al., " A 28-nm 75-fsrms analog
fractional-N sampling PLL with a highly
linear DTC incorporating
background
DTC gain calibration and reference clock
duty cycle correction, " IEEE J. Solid-State
Circuits, vol. 54, no. 5, pp. 1254-1265, May
2019. doi: 10.1109/JSSC.2019.2899726.
[27] M. Mercandelli et al., " A 12.5GHz fractional-N
type-I sampling PLL achieving 58fs integrated
jitter, " in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, San Francisco,
Feb. 2020, pp. 274-276. doi: 10.1109/
ISSCC19947.2020.9063135.
[28] X. Gao et al., " A 2.7-to-4.3GHz, 0.16psrmsjitter,
-246.8dB-FOM, digital fractionalN
sampling PLL in 28nm CMOS, " in Proc.
IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, San Francisco, Feb. 2016,
pp. 174-175. doi: 10.1109/ISSCC.2016.
7417963.
[29] N. Markulic et al., " A DTC-based subsampling
PLL capable of self-calibrated fractional
synthesis and two-point modulation, "
IEEE J. Solid-State Circuits, vol.
51, no. 12, pp. 3078-3092, Dec. 2016.
10.1109/JSSC.2016.2596766.
[30] L. Bertulessi et al., " A 30-GHz digital subsampling
fractional-N PLL with −238.6-dB
jitter-power figure of merit in 65-nm LP
CMOS, " IEEE J. Solid-State Circuits, vol.
54, no. 12, pp. 3493-3502, Dec. 2019. doi:
10.1109/JSSC.2019.2940332.
[31] W. Wu et al., " A 14nm analog sampling
fractional-N PLL with a digital-to-time
converter range-reduction technique achieving
80fs integrated jitter and 93fs at
near-integer channels, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, San Francisco, Feb. 2021, pp.
444-446. doi: 10.1109/ISSCC42613.2021.
9365850.
[32] M. B. Dayanik, N. Collins, and M. P. Flynn,
" A 28.5-33.5GHz fractional-N PLL using
a 3rd order noise shaping time-to-digital
converter with 176 fs resolution, " in
Proc. 40th Eur. Solid-State Circuits Conf.
(ESSCIRC), Sept. 2015, pp. 376-379. doi:
10.1109/ESSCIRC.2015.7313906.
[33] W. Wu, R. B. Staszewski, and J. R. Long,
" A 56.4-to-63.4 GHz multi-rate all-digital
fractional-N PLL for FMCW radar applications
in 65 nm CMOS, " IEEE J. Solid-State
Circuits, vol. 49, no. 5, pp. 1081-1096, May
2014. doi: 10.1109/JSSC.2014.2301764.
[34] Y.-L. Hsueh et al., " A 0.29mm2 frequency
synthesizer in 40nm CMOS with
0.19psrms jitter and <-100dBc reference
spur for 802.11ac, " in Proc. IEEE Int. SolidState
Circuits Conf. (ISSCC) Dig. Tech. Papers,
San Francisco, Feb. 2014, pp. 472-
474. doi: 10.1109/ISSCC.2014.6757518.
[35] Z. Zong, P. Chen, and R. Bogdan Staszewski,
" A low-noise fractional-N digital
frequency synthesizer with implicit frequency
tripling for mm-wave applications, "
IEEE J. Solid-State Circuits, vol.
54, no. 3, pp. 755-767, Mar. 2019. doi:
10.1109/JSSC.2018.2883397.
[36] F. Song, Y. Zhao, B. Wu, L. Tang, L. Lin, and
B. Razavi, " A fractional-N synthesizer with
110fsrms jitter and a reference quadrupler
for wideband 802.11ax, " in Proc. IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, San Francisco, Feb. 2019,
pp. 264-266. doi: 10.1109/ISSCC.2019.
8662488.
[37] Y. Lim et al., " A 170MHz-lock-in-range
and −253dB-FoMjitter 12-to-14.5GHz subsampling
PLL with a 150μW frequencydisturbance-correcting
loop using a lowpower
unevenly spaced edge generator, "
in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, San Francisco,
http://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf http://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf http://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf

IEEE Solid-States Circuits Magazine - Fall 2021

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2021

Contents
IEEE Solid-States Circuits Magazine - Fall 2021 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2021 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2021 - Contents
IEEE Solid-States Circuits Magazine - Fall 2021 - 2
IEEE Solid-States Circuits Magazine - Fall 2021 - 3
IEEE Solid-States Circuits Magazine - Fall 2021 - 4
IEEE Solid-States Circuits Magazine - Fall 2021 - 5
IEEE Solid-States Circuits Magazine - Fall 2021 - 6
IEEE Solid-States Circuits Magazine - Fall 2021 - 7
IEEE Solid-States Circuits Magazine - Fall 2021 - 8
IEEE Solid-States Circuits Magazine - Fall 2021 - 9
IEEE Solid-States Circuits Magazine - Fall 2021 - 10
IEEE Solid-States Circuits Magazine - Fall 2021 - 11
IEEE Solid-States Circuits Magazine - Fall 2021 - 12
IEEE Solid-States Circuits Magazine - Fall 2021 - 13
IEEE Solid-States Circuits Magazine - Fall 2021 - 14
IEEE Solid-States Circuits Magazine - Fall 2021 - 15
IEEE Solid-States Circuits Magazine - Fall 2021 - 16
IEEE Solid-States Circuits Magazine - Fall 2021 - 17
IEEE Solid-States Circuits Magazine - Fall 2021 - 18
IEEE Solid-States Circuits Magazine - Fall 2021 - 19
IEEE Solid-States Circuits Magazine - Fall 2021 - 20
IEEE Solid-States Circuits Magazine - Fall 2021 - 21
IEEE Solid-States Circuits Magazine - Fall 2021 - 22
IEEE Solid-States Circuits Magazine - Fall 2021 - 23
IEEE Solid-States Circuits Magazine - Fall 2021 - 24
IEEE Solid-States Circuits Magazine - Fall 2021 - 25
IEEE Solid-States Circuits Magazine - Fall 2021 - 26
IEEE Solid-States Circuits Magazine - Fall 2021 - 27
IEEE Solid-States Circuits Magazine - Fall 2021 - 28
IEEE Solid-States Circuits Magazine - Fall 2021 - 29
IEEE Solid-States Circuits Magazine - Fall 2021 - 30
IEEE Solid-States Circuits Magazine - Fall 2021 - 31
IEEE Solid-States Circuits Magazine - Fall 2021 - 32
IEEE Solid-States Circuits Magazine - Fall 2021 - 33
IEEE Solid-States Circuits Magazine - Fall 2021 - 34
IEEE Solid-States Circuits Magazine - Fall 2021 - 35
IEEE Solid-States Circuits Magazine - Fall 2021 - 36
IEEE Solid-States Circuits Magazine - Fall 2021 - 37
IEEE Solid-States Circuits Magazine - Fall 2021 - 38
IEEE Solid-States Circuits Magazine - Fall 2021 - 39
IEEE Solid-States Circuits Magazine - Fall 2021 - 40
IEEE Solid-States Circuits Magazine - Fall 2021 - 41
IEEE Solid-States Circuits Magazine - Fall 2021 - 42
IEEE Solid-States Circuits Magazine - Fall 2021 - 43
IEEE Solid-States Circuits Magazine - Fall 2021 - 44
IEEE Solid-States Circuits Magazine - Fall 2021 - 45
IEEE Solid-States Circuits Magazine - Fall 2021 - 46
IEEE Solid-States Circuits Magazine - Fall 2021 - 47
IEEE Solid-States Circuits Magazine - Fall 2021 - 48
IEEE Solid-States Circuits Magazine - Fall 2021 - 49
IEEE Solid-States Circuits Magazine - Fall 2021 - 50
IEEE Solid-States Circuits Magazine - Fall 2021 - 51
IEEE Solid-States Circuits Magazine - Fall 2021 - 52
IEEE Solid-States Circuits Magazine - Fall 2021 - 53
IEEE Solid-States Circuits Magazine - Fall 2021 - 54
IEEE Solid-States Circuits Magazine - Fall 2021 - 55
IEEE Solid-States Circuits Magazine - Fall 2021 - 56
IEEE Solid-States Circuits Magazine - Fall 2021 - 57
IEEE Solid-States Circuits Magazine - Fall 2021 - 58
IEEE Solid-States Circuits Magazine - Fall 2021 - 59
IEEE Solid-States Circuits Magazine - Fall 2021 - 60
IEEE Solid-States Circuits Magazine - Fall 2021 - 61
IEEE Solid-States Circuits Magazine - Fall 2021 - 62
IEEE Solid-States Circuits Magazine - Fall 2021 - 63
IEEE Solid-States Circuits Magazine - Fall 2021 - 64
IEEE Solid-States Circuits Magazine - Fall 2021 - 65
IEEE Solid-States Circuits Magazine - Fall 2021 - 66
IEEE Solid-States Circuits Magazine - Fall 2021 - 67
IEEE Solid-States Circuits Magazine - Fall 2021 - 68
IEEE Solid-States Circuits Magazine - Fall 2021 - 69
IEEE Solid-States Circuits Magazine - Fall 2021 - 70
IEEE Solid-States Circuits Magazine - Fall 2021 - 71
IEEE Solid-States Circuits Magazine - Fall 2021 - 72
IEEE Solid-States Circuits Magazine - Fall 2021 - 73
IEEE Solid-States Circuits Magazine - Fall 2021 - 74
IEEE Solid-States Circuits Magazine - Fall 2021 - 75
IEEE Solid-States Circuits Magazine - Fall 2021 - 76
IEEE Solid-States Circuits Magazine - Fall 2021 - 77
IEEE Solid-States Circuits Magazine - Fall 2021 - 78
IEEE Solid-States Circuits Magazine - Fall 2021 - 79
IEEE Solid-States Circuits Magazine - Fall 2021 - 80
IEEE Solid-States Circuits Magazine - Fall 2021 - 81
IEEE Solid-States Circuits Magazine - Fall 2021 - 82
IEEE Solid-States Circuits Magazine - Fall 2021 - 83
IEEE Solid-States Circuits Magazine - Fall 2021 - 84
IEEE Solid-States Circuits Magazine - Fall 2021 - 85
IEEE Solid-States Circuits Magazine - Fall 2021 - 86
IEEE Solid-States Circuits Magazine - Fall 2021 - 87
IEEE Solid-States Circuits Magazine - Fall 2021 - 88
IEEE Solid-States Circuits Magazine - Fall 2021 - 89
IEEE Solid-States Circuits Magazine - Fall 2021 - 90
IEEE Solid-States Circuits Magazine - Fall 2021 - 91
IEEE Solid-States Circuits Magazine - Fall 2021 - 92
IEEE Solid-States Circuits Magazine - Fall 2021 - 93
IEEE Solid-States Circuits Magazine - Fall 2021 - 94
IEEE Solid-States Circuits Magazine - Fall 2021 - 95
IEEE Solid-States Circuits Magazine - Fall 2021 - 96
IEEE Solid-States Circuits Magazine - Fall 2021 - 97
IEEE Solid-States Circuits Magazine - Fall 2021 - 98
IEEE Solid-States Circuits Magazine - Fall 2021 - 99
IEEE Solid-States Circuits Magazine - Fall 2021 - 100
IEEE Solid-States Circuits Magazine - Fall 2021 - 101
IEEE Solid-States Circuits Magazine - Fall 2021 - 102
IEEE Solid-States Circuits Magazine - Fall 2021 - 103
IEEE Solid-States Circuits Magazine - Fall 2021 - 104
IEEE Solid-States Circuits Magazine - Fall 2021 - 105
IEEE Solid-States Circuits Magazine - Fall 2021 - 106
IEEE Solid-States Circuits Magazine - Fall 2021 - 107
IEEE Solid-States Circuits Magazine - Fall 2021 - 108
IEEE Solid-States Circuits Magazine - Fall 2021 - 109
IEEE Solid-States Circuits Magazine - Fall 2021 - 110
IEEE Solid-States Circuits Magazine - Fall 2021 - 111
IEEE Solid-States Circuits Magazine - Fall 2021 - 112
IEEE Solid-States Circuits Magazine - Fall 2021 - 113
IEEE Solid-States Circuits Magazine - Fall 2021 - 114
IEEE Solid-States Circuits Magazine - Fall 2021 - 115
IEEE Solid-States Circuits Magazine - Fall 2021 - 116
IEEE Solid-States Circuits Magazine - Fall 2021 - 117
IEEE Solid-States Circuits Magazine - Fall 2021 - 118
IEEE Solid-States Circuits Magazine - Fall 2021 - 119
IEEE Solid-States Circuits Magazine - Fall 2021 - 120
IEEE Solid-States Circuits Magazine - Fall 2021 - 121
IEEE Solid-States Circuits Magazine - Fall 2021 - 122
IEEE Solid-States Circuits Magazine - Fall 2021 - 123
IEEE Solid-States Circuits Magazine - Fall 2021 - 124
IEEE Solid-States Circuits Magazine - Fall 2021 - 125
IEEE Solid-States Circuits Magazine - Fall 2021 - 126
IEEE Solid-States Circuits Magazine - Fall 2021 - 127
IEEE Solid-States Circuits Magazine - Fall 2021 - 128
IEEE Solid-States Circuits Magazine - Fall 2021 - 129
IEEE Solid-States Circuits Magazine - Fall 2021 - 130
IEEE Solid-States Circuits Magazine - Fall 2021 - 131
IEEE Solid-States Circuits Magazine - Fall 2021 - 132
IEEE Solid-States Circuits Magazine - Fall 2021 - 133
IEEE Solid-States Circuits Magazine - Fall 2021 - 134
IEEE Solid-States Circuits Magazine - Fall 2021 - 135
IEEE Solid-States Circuits Magazine - Fall 2021 - 136
IEEE Solid-States Circuits Magazine - Fall 2021 - 137
IEEE Solid-States Circuits Magazine - Fall 2021 - 138
IEEE Solid-States Circuits Magazine - Fall 2021 - 139
IEEE Solid-States Circuits Magazine - Fall 2021 - 140
IEEE Solid-States Circuits Magazine - Fall 2021 - 141
IEEE Solid-States Circuits Magazine - Fall 2021 - 142
IEEE Solid-States Circuits Magazine - Fall 2021 - 143
IEEE Solid-States Circuits Magazine - Fall 2021 - 144
IEEE Solid-States Circuits Magazine - Fall 2021 - 145
IEEE Solid-States Circuits Magazine - Fall 2021 - 146
IEEE Solid-States Circuits Magazine - Fall 2021 - 147
IEEE Solid-States Circuits Magazine - Fall 2021 - 148
IEEE Solid-States Circuits Magazine - Fall 2021 - 149
IEEE Solid-States Circuits Magazine - Fall 2021 - 150
IEEE Solid-States Circuits Magazine - Fall 2021 - 151
IEEE Solid-States Circuits Magazine - Fall 2021 - 152
IEEE Solid-States Circuits Magazine - Fall 2021 - 153
IEEE Solid-States Circuits Magazine - Fall 2021 - 154
IEEE Solid-States Circuits Magazine - Fall 2021 - 155
IEEE Solid-States Circuits Magazine - Fall 2021 - 156
IEEE Solid-States Circuits Magazine - Fall 2021 - 157
IEEE Solid-States Circuits Magazine - Fall 2021 - 158
IEEE Solid-States Circuits Magazine - Fall 2021 - 159
IEEE Solid-States Circuits Magazine - Fall 2021 - 160
IEEE Solid-States Circuits Magazine - Fall 2021 - 161
IEEE Solid-States Circuits Magazine - Fall 2021 - 162
IEEE Solid-States Circuits Magazine - Fall 2021 - 163
IEEE Solid-States Circuits Magazine - Fall 2021 - 164
IEEE Solid-States Circuits Magazine - Fall 2021 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com