IEEE Solid-States Circuits Magazine - Fall 2021 - 86

integration. As RF frequencies increase,
the antenna /2m spacing will
decrease; e.g., at 73 GHz, it is 0.41 cm
and at 140 GHz it is 0.21 cm, while at
500 GHz it is 0.06 cm, making it challenging
to space PAs and LNAs so that
the RF bumps are the same pitch as
the antenna spacing. In addition, the
RFIC die will not decrease in size at
the same rate, creating a need to use
dummy antennas on the package so
that the package can fit the RFIC. The
research question that arises here is,
" Can 3D heterogeneous integration
at nano/micro levels be leveraged
to overcome the integration issues? "
The other issue is how to integrate
the antennas on the package with the
wireless chiplet, FPGA, and still manage
to deliver power efficiently.
Power delivery is more of a challenge
for 3D integrated systems. Power
density is already an issue for high
frequency wireless systems as can be
seen in [40] and managing thermals
will be challenging. Sorting known
good die, test/debug methods, assembly
flows are known challenges
with 2.5D/3D integration. Of course,
there will be more design challenges
that will be uncovered as we start
exploring how to build these 2D/3D
sub-THz wireless systems. One of the
learnings that we can take from our
academic and industry colleagues is
that if modularity, standards, and
flexibility are exploited to their fullest
in an intelligent way, then we will
be well on our way to achieving our
eventual nirvana, the intelligent radio
cube. These radio cubes can be
distributed across the entire next
generation wireless network enabling
a converged intelligent communicatecompute
platform.
In addition to next generation wireless
applications, there are many other
applications that can benefit from
2D and 3D heterogeneous integration.
There is ongoing research and development
work in industry and academia
to fully determine and quantify
the impact of disaggregation. Updates
on this research have been presented
recently at ISSCC 2021, the 2021 IEEE
Custom IC Conference (CICC 2021),
86
FALL 2021
and the 2021 Symposium on VLSI. The
reader is encouraged to review the
published material.
In conclusion, the next decade
will be about convergence of intelligence,
compute, and communications.
Innovations in 2D and 3D heterogeneous
integration interconnect technologies
and design methodologies
enable enhanced compute-communicate
platforms that can be used
to build next generation wireless
infrastructure. Standardized interfaces
in 2.5D and 3D such as AIB ease
customization and potentially enable
a large chiplet ecosystem. We
are now entering a new dimension of
Moore's law.
References
[1] Cisco, " Cisco edge-to-enterprise IoT
analytics for electrical utilities solution
overview, " Accessed: 2020. [Online].
Available:
https://www.cisco.com/c/en/
us/solutions/col lateral/data-center
-virtualization/big-data/solution-overview
-c22-740248.htm
[2] Samsung, " 6G vision whitepaper. "
July
14, 2020. [Online]. Available: https://
news.samsung.com/global/samsungs-6g
-white-paper-lays-out-the-companys
-vis ion- for - the -nex t-generat ion- of
-communications-technology
[3] G. Moore, " Cramming more components
onto integrated circuits, " Electron. Mag.,
vol. 38, no. 8, pp. 82-85, Apr. 19, 1965.
[4] A. Kannan, N. E. Jerger, and G. H. Loh,
" Enabling interposer-based disintegration
of multi-core processors, " in Proc.
MICRO-48, Dec. 2015, pp. 546-558. pp.
546-558. doi: 10.1145/2830772.2830808.
[5] S. Naffziger, K. Lepak, M. Paraschou, and
M. Subramony, " AMD chiplet architecture
for high-performance server and desktop
products, " in Proc. ISSCC, Feb. 2020, pp.
44-45.
[6] S. Naffziger, " Architecting chiplet solutions
for high volume products, " ISSCC
Forum, vol. 5, Feb. 2021.
[7] A. Abnous and J. Rabaey, " Ultra-low-power
domain-specific multimedia processors, "
in Proc. IEEE VLSI Signal Process. Workshop,
San Francisco, Oct. 1996, pp. 461-470.
[8] H. Zhang et al., " A 1V heterogeneous reconfigurable
processor IC for baseband
wireless applications, " in Proc. ISSCC, Feb.
2000, pp. 68-69.
[9] H. Braunisch, A. Aleksov, S. Lotz, and J.
Swan, " High-speed performance of silicon
bridge die-to-die interconnects, " in Proc.
IEEE 20th Conf. Electr. Perform. Electron.
Packaging Syst. (EPEPS), San Jose, CA, Oct.
23-26, 2011.
[10] R. Mahajan et al., " Embedded multi-die interconnect
bridge (EMIB) - A high density,
high bandwidth packaging interconnect, "
in Proc. IEEE ECTC, 2016, pp. 557-565.
[11] T. McConnel, " Altera ships its first cyclone
V SoC Devices, " Embedded.com, Dec. 12,
2012. [Online]. Available: https://www
.embedded.com/altera-ships-its-first
-cyclone-v-soc-devices/
[12] M. Borgatti et al.,
" A 1GOPS reconfigurable
signal processing IC with embedIEEE
SOLID-STATE CIRCUITS MAGAZINE
ded FPGA and 3-port 1.2GB/s flash memory
system, " in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), San Francisco,
Feb. 2003, pp. 50 477. doi: 10.1109/ISSCC
.2003.1234203.
[13] L. Madden, E. Wu, N. Kim, and B. Banijamali,
" Advancing high performance heterogeneous
integration through die stacking, "
in Proc. ESSDERC, 2012, pp. 18-24.
[14] C. Erdmann et al., " A heterogeneous 3D-IC
consisting of two 28nm FPGA die and 32 reconfigurable
high-performance data converters, "
in Proc. ISSCC, 2014, pp. 120-121.
[15] D. Greenhill et al., " A 14nm 1GHz FPGA
with 2.5D transceiver integration, " in
Proc. Int. Solid-State Circuits Conf., San
Francisco, Feb. 2017, pp. 54-55.
[16] S. Zihir, O. D. Gurbuz, A. Kar-Roy, S. Raman,
and G. M. Rebeiz " 60-GHz 64- and
256-element wafer-scale phased array
transmitters using full-reticle and subreticle
stitching techniques, " IEEE Trans.
Microw. Theory Techn., vol. 64, no. 12,
pp. 4701-4719, Dec. 2016. doi: 10.1109/
TMTT.2016.2623948.
[17] S. Pellerano et al., " A scalable 71-to-76GHz
64-element phased-array transceiver
module with 2x2 direct-conversion IC in
22nm FinFET CMOS technology, " in Proc.
Int. Solid-State Circuits Conf., San Francisco,
Feb. 2019, pp. 174-175.
[18] G. Lacaille et al., " Design and demonstration
of a scalable massive MIMO uplink at
E-Band, " in Proc. IEEE Int. Conf. Commun.
Workshops (ICC 2020), Dublin, Ireland, June
7-11, 2020, pp. 1-6.
[19] M. Kada, " Research and development history
of three-dimensional integration technology, "
in Three-Dimensional
Integration of
Semiconductors: Processing, Materials, and
Applications, K. Kondo, M. Kada, and K. Takahashi,
Berlin: Springer-Verlag, pp. 1-23.
[20] H. Kurino et al., " Intelligent image sensor
chip with three-dimensional structure, "
in Proc. IEEE IEDM, 1999, pp. 879-882.
[21] K. W. Lee et al., " Three-dimensional shared
memory fabricated using wafer stacking
technology, " in Proc. IEEE IEDM, 2000, pp.
165-168.
[22] Golz et al., " 3D stackable 32nm high-K/
metal gate SOI embedded DRAM prototype, "
in Proc. VLSI Symp., 2011.
[23] Sukegawa et al., " A ΒΌ-inch 8Mpixel backilluminated
stacked CMOS image sensor, "
in Proc. ISSCC, 2013.
[24] Y. Kagawa and H. Iwamoto, " 3D integration
technologies for the stacked CMOS image
sensors, " in Proc. 3DIC, 2019, pp. 1-4.
[25] J. Lau, " Fan-out wafer-level packaging
for 3D IC heterogeneous integration, " in
Proc. China Semiconductor Technology Int.
Conf. (CSTIC), 2018, pp. 1-6.
[26] S. K. Moore, " Cerebras' new monster AI
chip adds 1.4 trillion transistors, " IEEE
Spectr., Apr. 20, 2021. [Online]. Available:
https://spectrum.ieee.org/cerebras
-giant-ai-chip-now-has-a-trillions-more
-transistors
[27] A. A. Elsherbini, S. M. Liff and J. M. Swan,
interconnect packaging, " in
" Heterogeneous integration using omnidirectional
Proc.
IEEE Int. Electron Devices Meeting
(IEDM), 2019, pp. 19.4.1-19.4.4. doi: 10.1109/
IEDM19573.2019.8993659.
[28] I. Cutress, " AMD demonstrates stacked 3D
V-cache technology: 192 MB at 2 TB/sec. "
May 31, 2021. [Online]. Available: https://
www.anandtech.com/show/16725/amd
-demonstrates-stacked-vcache-technology
-2-tbsec-for-15-gaming
[29] ht t ps : //eps. i eee . or g / techno l og y/
heterogeneous-integrat ion-roadmap
.html, Feb. 2021.
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/big-data/solution-overview-c22-740248.htm https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/big-data/solution-overview-c22-740248.htm https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/big-data/solution-overview-c22-740248.htm https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/big-data/solution-overview-c22-740248.htm https://news.samsung.com/global/samsungs-6g--white-paper-lays-out-the-companys-vision-for-the-next-generation-of-communications-technology https://news.samsung.com/global/samsungs-6g--white-paper-lays-out-the-companys-vision-for-the-next-generation-of-communications-technology https://news.samsung.com/global/samsungs-6g--white-paper-lays-out-the-companys-vision-for-the-next-generation-of-communications-technology https://news.samsung.com/global/samsungs-6g--white-paper-lays-out-the-companys-vision-for-the-next-generation-of-communications-technology https://news.samsung.com/global/samsungs-6g--white-paper-lays-out-the-companys-vision-for-the-next-generation-of-communications-technology https://spectrum.ieee.org/cerebras-giant-ai-chip-now-has-a-trillions-more-transistors https://spectrum.ieee.org/cerebras-giant-ai-chip-now-has-a-trillions-more-transistors https://spectrum.ieee.org/cerebras-giant-ai-chip-now-has-a-trillions-more-transistors https://www.anandtech.com/show/16725/amd-demonstrates-stacked-vcache-technology-2-tbsec-for-15-gaming https://www.anandtech.com/show/16725/amd-demonstrates-stacked-vcache-technology-2-tbsec-for-15-gaming http://www.Embedded.com https://www.embedded.com/altera-ships-its-first-cyclone-v-soc-devices/ https://www.anandtech.com/show/16725/amd-demonstrates-stacked-vcache-technology-2-tbsec-for-15-gaming https://www.anandtech.com/show/16725/amd-demonstrates-stacked-vcache-technology-2-tbsec-for-15-gaming https://www.embedded.com/altera-ships-its-first-cyclone-v-soc-devices/ https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html https://www.embedded.com/altera-ships-its-first-cyclone-v-soc-devices/ https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html

IEEE Solid-States Circuits Magazine - Fall 2021

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2021

Contents
IEEE Solid-States Circuits Magazine - Fall 2021 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2021 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2021 - Contents
IEEE Solid-States Circuits Magazine - Fall 2021 - 2
IEEE Solid-States Circuits Magazine - Fall 2021 - 3
IEEE Solid-States Circuits Magazine - Fall 2021 - 4
IEEE Solid-States Circuits Magazine - Fall 2021 - 5
IEEE Solid-States Circuits Magazine - Fall 2021 - 6
IEEE Solid-States Circuits Magazine - Fall 2021 - 7
IEEE Solid-States Circuits Magazine - Fall 2021 - 8
IEEE Solid-States Circuits Magazine - Fall 2021 - 9
IEEE Solid-States Circuits Magazine - Fall 2021 - 10
IEEE Solid-States Circuits Magazine - Fall 2021 - 11
IEEE Solid-States Circuits Magazine - Fall 2021 - 12
IEEE Solid-States Circuits Magazine - Fall 2021 - 13
IEEE Solid-States Circuits Magazine - Fall 2021 - 14
IEEE Solid-States Circuits Magazine - Fall 2021 - 15
IEEE Solid-States Circuits Magazine - Fall 2021 - 16
IEEE Solid-States Circuits Magazine - Fall 2021 - 17
IEEE Solid-States Circuits Magazine - Fall 2021 - 18
IEEE Solid-States Circuits Magazine - Fall 2021 - 19
IEEE Solid-States Circuits Magazine - Fall 2021 - 20
IEEE Solid-States Circuits Magazine - Fall 2021 - 21
IEEE Solid-States Circuits Magazine - Fall 2021 - 22
IEEE Solid-States Circuits Magazine - Fall 2021 - 23
IEEE Solid-States Circuits Magazine - Fall 2021 - 24
IEEE Solid-States Circuits Magazine - Fall 2021 - 25
IEEE Solid-States Circuits Magazine - Fall 2021 - 26
IEEE Solid-States Circuits Magazine - Fall 2021 - 27
IEEE Solid-States Circuits Magazine - Fall 2021 - 28
IEEE Solid-States Circuits Magazine - Fall 2021 - 29
IEEE Solid-States Circuits Magazine - Fall 2021 - 30
IEEE Solid-States Circuits Magazine - Fall 2021 - 31
IEEE Solid-States Circuits Magazine - Fall 2021 - 32
IEEE Solid-States Circuits Magazine - Fall 2021 - 33
IEEE Solid-States Circuits Magazine - Fall 2021 - 34
IEEE Solid-States Circuits Magazine - Fall 2021 - 35
IEEE Solid-States Circuits Magazine - Fall 2021 - 36
IEEE Solid-States Circuits Magazine - Fall 2021 - 37
IEEE Solid-States Circuits Magazine - Fall 2021 - 38
IEEE Solid-States Circuits Magazine - Fall 2021 - 39
IEEE Solid-States Circuits Magazine - Fall 2021 - 40
IEEE Solid-States Circuits Magazine - Fall 2021 - 41
IEEE Solid-States Circuits Magazine - Fall 2021 - 42
IEEE Solid-States Circuits Magazine - Fall 2021 - 43
IEEE Solid-States Circuits Magazine - Fall 2021 - 44
IEEE Solid-States Circuits Magazine - Fall 2021 - 45
IEEE Solid-States Circuits Magazine - Fall 2021 - 46
IEEE Solid-States Circuits Magazine - Fall 2021 - 47
IEEE Solid-States Circuits Magazine - Fall 2021 - 48
IEEE Solid-States Circuits Magazine - Fall 2021 - 49
IEEE Solid-States Circuits Magazine - Fall 2021 - 50
IEEE Solid-States Circuits Magazine - Fall 2021 - 51
IEEE Solid-States Circuits Magazine - Fall 2021 - 52
IEEE Solid-States Circuits Magazine - Fall 2021 - 53
IEEE Solid-States Circuits Magazine - Fall 2021 - 54
IEEE Solid-States Circuits Magazine - Fall 2021 - 55
IEEE Solid-States Circuits Magazine - Fall 2021 - 56
IEEE Solid-States Circuits Magazine - Fall 2021 - 57
IEEE Solid-States Circuits Magazine - Fall 2021 - 58
IEEE Solid-States Circuits Magazine - Fall 2021 - 59
IEEE Solid-States Circuits Magazine - Fall 2021 - 60
IEEE Solid-States Circuits Magazine - Fall 2021 - 61
IEEE Solid-States Circuits Magazine - Fall 2021 - 62
IEEE Solid-States Circuits Magazine - Fall 2021 - 63
IEEE Solid-States Circuits Magazine - Fall 2021 - 64
IEEE Solid-States Circuits Magazine - Fall 2021 - 65
IEEE Solid-States Circuits Magazine - Fall 2021 - 66
IEEE Solid-States Circuits Magazine - Fall 2021 - 67
IEEE Solid-States Circuits Magazine - Fall 2021 - 68
IEEE Solid-States Circuits Magazine - Fall 2021 - 69
IEEE Solid-States Circuits Magazine - Fall 2021 - 70
IEEE Solid-States Circuits Magazine - Fall 2021 - 71
IEEE Solid-States Circuits Magazine - Fall 2021 - 72
IEEE Solid-States Circuits Magazine - Fall 2021 - 73
IEEE Solid-States Circuits Magazine - Fall 2021 - 74
IEEE Solid-States Circuits Magazine - Fall 2021 - 75
IEEE Solid-States Circuits Magazine - Fall 2021 - 76
IEEE Solid-States Circuits Magazine - Fall 2021 - 77
IEEE Solid-States Circuits Magazine - Fall 2021 - 78
IEEE Solid-States Circuits Magazine - Fall 2021 - 79
IEEE Solid-States Circuits Magazine - Fall 2021 - 80
IEEE Solid-States Circuits Magazine - Fall 2021 - 81
IEEE Solid-States Circuits Magazine - Fall 2021 - 82
IEEE Solid-States Circuits Magazine - Fall 2021 - 83
IEEE Solid-States Circuits Magazine - Fall 2021 - 84
IEEE Solid-States Circuits Magazine - Fall 2021 - 85
IEEE Solid-States Circuits Magazine - Fall 2021 - 86
IEEE Solid-States Circuits Magazine - Fall 2021 - 87
IEEE Solid-States Circuits Magazine - Fall 2021 - 88
IEEE Solid-States Circuits Magazine - Fall 2021 - 89
IEEE Solid-States Circuits Magazine - Fall 2021 - 90
IEEE Solid-States Circuits Magazine - Fall 2021 - 91
IEEE Solid-States Circuits Magazine - Fall 2021 - 92
IEEE Solid-States Circuits Magazine - Fall 2021 - 93
IEEE Solid-States Circuits Magazine - Fall 2021 - 94
IEEE Solid-States Circuits Magazine - Fall 2021 - 95
IEEE Solid-States Circuits Magazine - Fall 2021 - 96
IEEE Solid-States Circuits Magazine - Fall 2021 - 97
IEEE Solid-States Circuits Magazine - Fall 2021 - 98
IEEE Solid-States Circuits Magazine - Fall 2021 - 99
IEEE Solid-States Circuits Magazine - Fall 2021 - 100
IEEE Solid-States Circuits Magazine - Fall 2021 - 101
IEEE Solid-States Circuits Magazine - Fall 2021 - 102
IEEE Solid-States Circuits Magazine - Fall 2021 - 103
IEEE Solid-States Circuits Magazine - Fall 2021 - 104
IEEE Solid-States Circuits Magazine - Fall 2021 - 105
IEEE Solid-States Circuits Magazine - Fall 2021 - 106
IEEE Solid-States Circuits Magazine - Fall 2021 - 107
IEEE Solid-States Circuits Magazine - Fall 2021 - 108
IEEE Solid-States Circuits Magazine - Fall 2021 - 109
IEEE Solid-States Circuits Magazine - Fall 2021 - 110
IEEE Solid-States Circuits Magazine - Fall 2021 - 111
IEEE Solid-States Circuits Magazine - Fall 2021 - 112
IEEE Solid-States Circuits Magazine - Fall 2021 - 113
IEEE Solid-States Circuits Magazine - Fall 2021 - 114
IEEE Solid-States Circuits Magazine - Fall 2021 - 115
IEEE Solid-States Circuits Magazine - Fall 2021 - 116
IEEE Solid-States Circuits Magazine - Fall 2021 - 117
IEEE Solid-States Circuits Magazine - Fall 2021 - 118
IEEE Solid-States Circuits Magazine - Fall 2021 - 119
IEEE Solid-States Circuits Magazine - Fall 2021 - 120
IEEE Solid-States Circuits Magazine - Fall 2021 - 121
IEEE Solid-States Circuits Magazine - Fall 2021 - 122
IEEE Solid-States Circuits Magazine - Fall 2021 - 123
IEEE Solid-States Circuits Magazine - Fall 2021 - 124
IEEE Solid-States Circuits Magazine - Fall 2021 - 125
IEEE Solid-States Circuits Magazine - Fall 2021 - 126
IEEE Solid-States Circuits Magazine - Fall 2021 - 127
IEEE Solid-States Circuits Magazine - Fall 2021 - 128
IEEE Solid-States Circuits Magazine - Fall 2021 - 129
IEEE Solid-States Circuits Magazine - Fall 2021 - 130
IEEE Solid-States Circuits Magazine - Fall 2021 - 131
IEEE Solid-States Circuits Magazine - Fall 2021 - 132
IEEE Solid-States Circuits Magazine - Fall 2021 - 133
IEEE Solid-States Circuits Magazine - Fall 2021 - 134
IEEE Solid-States Circuits Magazine - Fall 2021 - 135
IEEE Solid-States Circuits Magazine - Fall 2021 - 136
IEEE Solid-States Circuits Magazine - Fall 2021 - 137
IEEE Solid-States Circuits Magazine - Fall 2021 - 138
IEEE Solid-States Circuits Magazine - Fall 2021 - 139
IEEE Solid-States Circuits Magazine - Fall 2021 - 140
IEEE Solid-States Circuits Magazine - Fall 2021 - 141
IEEE Solid-States Circuits Magazine - Fall 2021 - 142
IEEE Solid-States Circuits Magazine - Fall 2021 - 143
IEEE Solid-States Circuits Magazine - Fall 2021 - 144
IEEE Solid-States Circuits Magazine - Fall 2021 - 145
IEEE Solid-States Circuits Magazine - Fall 2021 - 146
IEEE Solid-States Circuits Magazine - Fall 2021 - 147
IEEE Solid-States Circuits Magazine - Fall 2021 - 148
IEEE Solid-States Circuits Magazine - Fall 2021 - 149
IEEE Solid-States Circuits Magazine - Fall 2021 - 150
IEEE Solid-States Circuits Magazine - Fall 2021 - 151
IEEE Solid-States Circuits Magazine - Fall 2021 - 152
IEEE Solid-States Circuits Magazine - Fall 2021 - 153
IEEE Solid-States Circuits Magazine - Fall 2021 - 154
IEEE Solid-States Circuits Magazine - Fall 2021 - 155
IEEE Solid-States Circuits Magazine - Fall 2021 - 156
IEEE Solid-States Circuits Magazine - Fall 2021 - 157
IEEE Solid-States Circuits Magazine - Fall 2021 - 158
IEEE Solid-States Circuits Magazine - Fall 2021 - 159
IEEE Solid-States Circuits Magazine - Fall 2021 - 160
IEEE Solid-States Circuits Magazine - Fall 2021 - 161
IEEE Solid-States Circuits Magazine - Fall 2021 - 162
IEEE Solid-States Circuits Magazine - Fall 2021 - 163
IEEE Solid-States Circuits Magazine - Fall 2021 - 164
IEEE Solid-States Circuits Magazine - Fall 2021 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2021 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com