IEEE Solid-States Circuits Magazine - Fall 2022 - 49

water soluble, and no other adhesive is
needed. To accommodate the custom
communication protocol, a compact
external RX hub was also developed,
which consisted of an antenna, an SDR,
and a computer, which can be as small
as a card-sized Raspberry Pi.
Two EEG experiments are conducted
to compare the penny-sized
device with a clinical instrument. The
first experiment is the alpha-wave
test (eye open/close), which is an EEG
signal that can be measured when a
person is awake with the eyes closed.
The results are usually analyzed in
the frequency domain, shown in Figure
14(a), and we can see that the
result from the penny-sized recorder
agrees well with the clinical system.
The second experiment is the ERP,
as shown in Figure 14(b), which can be
used in understanding mental health
conditions. Colored shapes are periodically
shown on the screen. Most of
them have the same color, which is red
here. However, one with a different
color occasionally shows up. The ERP
in this test is the EEG signal around
300 ms after this " odd " -colored item is
presented. As can be seen here, the
results from both setups match well.
These two experiments validate the
device in capturing clinically important
EEG signals. With the integrated FDMA
TX validated in Figure 11, this device
is a promising candidate to achieve
distributed wireless EEG recording.
Conclusions
Noninvasive EEG recording has the
potential to benefit everyone in mental
health monitoring and more undiscovered
applications. A wearable EEG
recorder is in demand for long-term
recording and BCI functionalities
with the following properties:
■ a similar recording accuracy and
site coverage as the clinical
instruments
■
easy-to-prepare electrodes
■ minimal discomfort with no loose
or long wires
■ a long-term battery life
■ compact and mobile external RX.
Thanks to a better understanding
of EEG signal characteristics and
recording requirements,
recent
wearable prototypes have already
validated the possibility of a distributed
wireless recording scheme with
no long wires. Further improvements
in circuit and system optimization
have the potential to enable EEG as a
prevalent health-monitoring method
in the near future.
References
[1] L. F. Haas, " Hans Berger (1873-1941),
Richard Caton (1842-1926), and electroencephalography, "
J. Neurol. Neurosurg.
Psychiatry, vol. 74, no. 1, p. 9, Jan. 2003,
doi: 10.1136/jnnp.74.1.9.
[2] D. L. Schomer and F. H. L. da Silva, Niedermeyer's
Electroencephalography: Basic
Principles, Clinical Applications, and Related
Fields. Oxford, U.K.: Oxford Univ.
Press, 2017.
[3] H. Aurlien et al., " EEG background activity
described by a large computerized database, "
Clin. Neurophysiol., vol. 115, no. 3,
pp. 665-673, Mar. 2004, doi: 10.1016/j.
clinph.2003.10.019.
[4] D. Petit, J.-F. Gagnon, M. L. Fantini, L.
Ferini-Strambi, and J. Montplaisir, " Sleep
and quantitative EEG in neurodegenerative
disorders, " J. Psychosomatic Res., vol.
56, no. 5, pp. 487-496, May 2004, doi:
10.1016/j.jpsychores.2004.02.001.
[5] W. Wu et al., " An electroencephalographic
signature predicts antidepressant response
in major depression, " Nature Biotechnol.,
vol. 38, no. 4, pp. 439-447, Apr.
2020, doi: 10.1038/s41587-019-0397-3.
[6] Y. Liao, Z. A. Acar, S. Makeig, and G. Deak,
" EEG imaging of toddlers during dyadic
turn-taking: Mu-rhythm modulation while
producing or observing social actions, "
NeuroImage, vol. 112, pp. 52-60, May 2015,
doi: 10.1016/j.neuroimage.2015.02.055.
[7] R. Portillo-Lara, B. Tahirbegi, C. A. R.
Chapman, J. A. Goding, and R. A. Green,
" Mind the gap: State-of-the-art technologies
and applications for EEG-based
brain-computer interfaces, " APL Bioeng.,
vol. 5, no. 3, p. 031507, Sep. 2021, doi:
10.1063/5.0047237.
[8] B. Busze et al., " Ultra low power programmable
biomedical SoC for on-body ECG
and EEG processing, " in Proc. IEEE Asian
Solid-State Circuits Conf., Beijing, China,
Nov. 2010, pp. 1-4, doi: 10.1109/ASSCC.
2010.5716.
[9] B. A. Taheri, R. T. Knight, and R. L. Smith,
" A dry electrode for EEG recording, " Electroencephalogr.
Clin. Neurophysiol., vol.
90, no. 5, pp. 376-383, May 1994, doi:
10.1016/0013-4694(94)90053-1.
[10] N. A. Alba, R. J. Sclabassi, M. Sun, and
X. T. Cui, " Novel hydrogel-based preparation-free
EEG electrode, " IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 18, no. 4,
pp. 415-423, Aug. 2010, doi: 10.1109/TNSRE.2010.2048579.
[11]
J. Xu et al., " A wearable 8-channel activeelectrode
EEG/ETI acquisition system for
body area networks, " IEEE J. Solid-State
Circuits, vol. 49, no. 9, pp. 2005-2016, Sep.
2014, doi: 10.1109/JSSC. 2014.2325557.
[12] J. Lee, K.-R. Lee, U. Ha, J.-H. Kim, K. Lee,
and H.-J. Yoo, " A 0.8V 82.9µW in-ear BCI
controller system with 8.8 PEF EEG instrumentational
amplifier and wireless
BAN transceiver, " in Proc. IEEE Symp.
VLSI Circuits, Honolulu, HI, USA, Jun.
2018, pp. 123-124, doi: 10.1109/VLSIC.
2018.8502263.
[13] T. Tang et al., " EEG dust: A BCC-based wireless
concurrent recording/transmitting
concentric electrode, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC), San Francisco,
CA, USA, Feb. 2020, pp. 516-518,
doi: 10.1109/ISSCC19947.2020.9063054.
[14] R. Kaveh et al., " Wireless user-generic ear
EEG, " IEEE Trans. Biomed. Circuits Syst.,
vol. 14, no. 4, pp. 727-737, Aug. 2020, doi:
10.1109/TBCAS.2020.3001265.
[15] P. Kidmose, D. Looney, M. Ungstrup, M. L.
Rank, and D. P. Mandic, " A study of evoked
potentials from ear-EEG, " IEEE Trans.
Biomed. Eng., vol. 60, no. 10, pp. 2824-
2830, Oct. 2013, doi: 10.1109/TBME.2013.
2264956.
[16] R. W. Greene and M. G. Frank, " Slow wave
activity during sleep: Functional and
therapeutic implications, " Neuroscientist,
vol. 16, no. 6, pp. 618-633, Dec. 2010, doi:
10.1177/1073858410377064.
[17] P. L. Nunez and R. Srinivasan, Electric
Fields of the Brain: The Neuro-Physics of
EEG, 2nd ed. New York, NY, USA: Oxford
Univ. Press, 2006.
[18] W. O. Tatum, " Long-term EEG monitoring:
A clinical approach to electrophysiology, "
J. Clin. Neurophysiol., vol. 18, no. 5, pp.
442-455, 2001, doi: 10.1097/00004691200109000-00009.
[19]
M. Steinisch, M. G. Tana, and S. Comani, " A
post-stroke rehabilitation system integrating
robotics, VR and high-resolution EEG
imaging, " IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 21, no. 5, pp. 849-859, Sep.
2013, doi: 10.1109/TNSRE.2013.2267851.
[20] R. R. Harrison, " The design of integrated
circuits to observe brain activity, " Proc.
IEEE, vol. 96, no. 7, pp. 1203-1216, Jul.
2008, doi: 10.1109/JPROC.2008.922581.
[21] F. Hashemi Noshahr, M. Nabavi, and M.
Sawan, " Multi-channel neural recording implants:
A review, " Sensors, vol. 20, no. 3, p.
904, Feb. 2020, doi: 10.3390/s20030904.
[22] J. Chen, M. Tarkhan, H. Wu, F. H. Noshahr,
J. Yang, and M. Sawan, " Recent trends and
future prospects of neural recording circuits
and systems: A tutorial brief, " IEEE
Trans. Circuits Syst., II, Exp. Briefs, vol.
69, no. 6, pp. 2654-2660, Jun. 2022, doi:
10.1109/TCSII.2022.3171689.
[23] H. Chandrakumar and D. Markovic, " A
15.2-ENOB 5-kHz BW 4.5-μW chopped CT
ΔΣ-ADC for artifact-tolerant neural recording
front ends, " IEEE J. Solid-State Circuits,
vol. 53, no. 12, pp. 3470-3483, Dec.
2018, doi: 10.1109/JSSC.2018.2876468.
[24] W. Jiang, V. Hokhikyan, H. Chandrakumar,
V. Karkare, and D. Markovic, " A ±50-mV
linear-input-range VCO-based neural-recording
front-end with digital nonlinearity
correction, " IEEE J. Solid-State Circuits,
vol. 52, no. 1, pp. 173-184, Jan. 2017, doi:
10.1109/JSSC.2016.2624989.
[25] W. Zhao et al., " A 0.025-mm2 0.8-V 78.5dBSNDR
VCO-based sensor readout circuit in
a hybrid PLL-ΔΣM structure, " IEEE J. SolidState
Circuits, vol. 55, no. 3, pp. 666-679,
Mar. 2020, doi: 10.1109/JSSC.2019.2959479.
[26] C. Lee et al., " A 6.5-μW 10-kHz BW 80.4dB
SNDR Gm-C-based CT Δ∑ modulator
with a feedback-assisted Gm linearization
for artifact-tolerant neural recording, "
IEEE J. Solid-State Circuits, vol. 55, no. 11,
pp. 2889-2901, Nov. 2020, doi: 10.1109/
JSSC.2020.3018478.
[27] C. Kim, S. Joshi, H. Courellis, J. Wang, C.
Miller, and G. Cauwenberghs, " Sub-μVrmsnoise
sub-μW/channel ADC-direct neural
recording with 200-mV/ms transient recovery
through predictive digital autoranging, "
IEEE SOLID-STATE CIRCUITS MAGAZINE
FALL 2022
49

IEEE Solid-States Circuits Magazine - Fall 2022

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2022

Contents
IEEE Solid-States Circuits Magazine - Fall 2022 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2022 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2022 - Contents
IEEE Solid-States Circuits Magazine - Fall 2022 - 2
IEEE Solid-States Circuits Magazine - Fall 2022 - 3
IEEE Solid-States Circuits Magazine - Fall 2022 - 4
IEEE Solid-States Circuits Magazine - Fall 2022 - 5
IEEE Solid-States Circuits Magazine - Fall 2022 - 6
IEEE Solid-States Circuits Magazine - Fall 2022 - 7
IEEE Solid-States Circuits Magazine - Fall 2022 - 8
IEEE Solid-States Circuits Magazine - Fall 2022 - 9
IEEE Solid-States Circuits Magazine - Fall 2022 - 10
IEEE Solid-States Circuits Magazine - Fall 2022 - 11
IEEE Solid-States Circuits Magazine - Fall 2022 - 12
IEEE Solid-States Circuits Magazine - Fall 2022 - 13
IEEE Solid-States Circuits Magazine - Fall 2022 - 14
IEEE Solid-States Circuits Magazine - Fall 2022 - 15
IEEE Solid-States Circuits Magazine - Fall 2022 - 16
IEEE Solid-States Circuits Magazine - Fall 2022 - 17
IEEE Solid-States Circuits Magazine - Fall 2022 - 18
IEEE Solid-States Circuits Magazine - Fall 2022 - 19
IEEE Solid-States Circuits Magazine - Fall 2022 - 20
IEEE Solid-States Circuits Magazine - Fall 2022 - 21
IEEE Solid-States Circuits Magazine - Fall 2022 - 22
IEEE Solid-States Circuits Magazine - Fall 2022 - 23
IEEE Solid-States Circuits Magazine - Fall 2022 - 24
IEEE Solid-States Circuits Magazine - Fall 2022 - 25
IEEE Solid-States Circuits Magazine - Fall 2022 - 26
IEEE Solid-States Circuits Magazine - Fall 2022 - 27
IEEE Solid-States Circuits Magazine - Fall 2022 - 28
IEEE Solid-States Circuits Magazine - Fall 2022 - 29
IEEE Solid-States Circuits Magazine - Fall 2022 - 30
IEEE Solid-States Circuits Magazine - Fall 2022 - 31
IEEE Solid-States Circuits Magazine - Fall 2022 - 32
IEEE Solid-States Circuits Magazine - Fall 2022 - 33
IEEE Solid-States Circuits Magazine - Fall 2022 - 34
IEEE Solid-States Circuits Magazine - Fall 2022 - 35
IEEE Solid-States Circuits Magazine - Fall 2022 - 36
IEEE Solid-States Circuits Magazine - Fall 2022 - 37
IEEE Solid-States Circuits Magazine - Fall 2022 - 38
IEEE Solid-States Circuits Magazine - Fall 2022 - 39
IEEE Solid-States Circuits Magazine - Fall 2022 - 40
IEEE Solid-States Circuits Magazine - Fall 2022 - 41
IEEE Solid-States Circuits Magazine - Fall 2022 - 42
IEEE Solid-States Circuits Magazine - Fall 2022 - 43
IEEE Solid-States Circuits Magazine - Fall 2022 - 44
IEEE Solid-States Circuits Magazine - Fall 2022 - 45
IEEE Solid-States Circuits Magazine - Fall 2022 - 46
IEEE Solid-States Circuits Magazine - Fall 2022 - 47
IEEE Solid-States Circuits Magazine - Fall 2022 - 48
IEEE Solid-States Circuits Magazine - Fall 2022 - 49
IEEE Solid-States Circuits Magazine - Fall 2022 - 50
IEEE Solid-States Circuits Magazine - Fall 2022 - 51
IEEE Solid-States Circuits Magazine - Fall 2022 - 52
IEEE Solid-States Circuits Magazine - Fall 2022 - 53
IEEE Solid-States Circuits Magazine - Fall 2022 - 54
IEEE Solid-States Circuits Magazine - Fall 2022 - 55
IEEE Solid-States Circuits Magazine - Fall 2022 - 56
IEEE Solid-States Circuits Magazine - Fall 2022 - 57
IEEE Solid-States Circuits Magazine - Fall 2022 - 58
IEEE Solid-States Circuits Magazine - Fall 2022 - 59
IEEE Solid-States Circuits Magazine - Fall 2022 - 60
IEEE Solid-States Circuits Magazine - Fall 2022 - 61
IEEE Solid-States Circuits Magazine - Fall 2022 - 62
IEEE Solid-States Circuits Magazine - Fall 2022 - 63
IEEE Solid-States Circuits Magazine - Fall 2022 - 64
IEEE Solid-States Circuits Magazine - Fall 2022 - 65
IEEE Solid-States Circuits Magazine - Fall 2022 - 66
IEEE Solid-States Circuits Magazine - Fall 2022 - 67
IEEE Solid-States Circuits Magazine - Fall 2022 - 68
IEEE Solid-States Circuits Magazine - Fall 2022 - 69
IEEE Solid-States Circuits Magazine - Fall 2022 - 70
IEEE Solid-States Circuits Magazine - Fall 2022 - 71
IEEE Solid-States Circuits Magazine - Fall 2022 - 72
IEEE Solid-States Circuits Magazine - Fall 2022 - 73
IEEE Solid-States Circuits Magazine - Fall 2022 - 74
IEEE Solid-States Circuits Magazine - Fall 2022 - 75
IEEE Solid-States Circuits Magazine - Fall 2022 - 76
IEEE Solid-States Circuits Magazine - Fall 2022 - 77
IEEE Solid-States Circuits Magazine - Fall 2022 - 78
IEEE Solid-States Circuits Magazine - Fall 2022 - 79
IEEE Solid-States Circuits Magazine - Fall 2022 - 80
IEEE Solid-States Circuits Magazine - Fall 2022 - 81
IEEE Solid-States Circuits Magazine - Fall 2022 - 82
IEEE Solid-States Circuits Magazine - Fall 2022 - 83
IEEE Solid-States Circuits Magazine - Fall 2022 - 84
IEEE Solid-States Circuits Magazine - Fall 2022 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2022 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com