IEEE Solid-States Circuits Magazine - Fall 2023 - 26
hundreds of mW of power to small
mm-size receivers with a penetration
depth of about 10-30 mm [93]. The
power conversion efficiency (PCE) of
the IPT systems for compact receivers
is significantly influenced by the operating
frequency, distance, and misalignment.
To enhance the PCE of the
IPT system, various techniques have
been proposed, including new circuit
topologies [94], impedance matching
techniques, and highly efficient PMU
circuits for both the TX and the RX
[95]. Since the basic two-coil configuration
exhibits limitations in terms
of distance coverage for small-sized
receivers, cascaded coil configurations
have been proposed to improve
the PCE for applications that require
larger distances. To alleviate the PCE
drop due to misalignment, several
methods, such as coil design and new
compensation topologies, have been
proposed. In addition, IPT systems
utilizing a TX coil array [93] or 3D TX
[96] coils are promising to solve the
misalignment problem for scenarios
of low coil coupling coefficient.
Since acoustic waves (from hundreds
of kHz to a few MHz) are less
attenuated by the human tissues
(about 0.5-1.0 dB∙cm-1∙MHz-1 [97])
compared with RF, UPT is a popular
WPT solution for implantable medical
devices. According to Food and
Drug Administration regulations, the
maximum power intensity for UPT is
720 mW/cm2 [98], while the maximum
power intensity for RF is 10 mW/cm2
[99], [100]. It is promising to deliver
more power by using UPT than IPT.
However, ultrasound requires a medium
to propagate, and it is hard to
transfer energy through air [92]. Research
has mainly focused on three
directions to improve the UPT system
PCE:
1) to explore new piezoelectric materials
and/or transducer structures
with higher electromechanical
energy conversion efficiency [101]
2) to optimize the structure to realize
acoustic impedance matching
[102]
3) to optimize the circuit to realize
electrical impedance matching
26
FALL 2023
and to lower electrical loss, by frequency
optimization, introducing
impedance matching strategies,
and efficient power transfer circuit
design [103], [104].
Recently, body-coupled energy and
optical techniques have also been investigated
for biomedical applications.
The body-coupled methods can transfer
energy to the full body area on the
skin surface, with limited power of a
few nW [105]. The harvested power of
optical techniques relies on the environmental
illumination intensity, varying
from 10 nW/cm2 to 10 mW/cm2,
and becomes ineffective in a dark environment
[106]. To apply the bodycoupled
or optical techniques to real
applications, improved effectiveness
and stably high energy density for
more scenarios are required.
Outlook
In the past several years, customized
wireless compact neural interface
shows obvious advantages to
cable-based neural interfaces. Frontier
research [13], [17], [21], [22], [23]
continuously improves key performances,
including
1) the low-noise multichannel data
acquisition solution [17], [22], [23]
2) efficiency of the on-chip processing
and closed loop control
strategy [13], [21]
3) the wireless data and power transmission
method [22], [23].
In the future, the emerging solutions
will enable more scenarios for complicated
neural circuit exploration.
Acknowledgment
This work was supported in part by
the National Science Foundation of
China (NSFC) under Grants 92164022
and 62227801, in part by the Tsinghua
University Initiative Scientific
Research Program,
in part by the
Beijing Innovation Center for Future
Chips, and in part by the Beijing National
Research Center for Information
Science and Technology. The
corresponding author is Milin Zhang.
References
[1] P. Cong, N. Chaimanonart, W. H. Ko, and
D. J. Young, " A wireless and batteryless
IEEE SOLID-STATE CIRCUITS MAGAZINE
10-bit implantable blood pressure sensing
microsystem with adaptive RF powering
for real-time laboratory mice monitoring, "
IEEE Solid-State Circuits Lett., vol.
44, no. 12, pp. 3631-3644, Dec. 2009, doi:
10.1109/JSSC.2009.2035551.
[2] W.-M. Chen et al.,
" A fully integrated
8-channel closed-loop neural-prosthetic
CMOS SoC for real-time epileptic seizure
control, " IEEE Solid-State Circuits Lett.,
vol. 49, no. 1, pp. 232-247, Jan. 2014, doi:
10.1109/JSSC.2013.2284346.
[3] A. Borna and K. Najafi, " A low power
light weight wireless multichannel microsystem
for reliable neural recording, "
IEEE Solid-State Circuits Lett., vol. 49, no.
2, pp. 439-451, Feb. 2014, doi: 10.1109/
JSSC.2013.2293773.
[4] P. Sharp and J. S. Villano, The Laboratory
Rat. Boca Raton, FL, USA: CRC Press,
2012.
[5] C. T. Miller, W. A. Freiwald, D. A. Leopold,
J. F. Mitchell, A. C. Silva, and X. Wang,
" Marmosets: A neuroscientific model of
human social behavior, " Neuron, vol.
90, no. 2, pp. 219-233, Apr. 2016, doi:
10.1016/j.neuron.2016.03.018.
[6] J. Reynolds and E. Issa. " 2023 marmoset
community white paper. " Marmohub.
2023.
marmohub.org/2023-white-papers
[7] J. C. Mitani, J. Call, P. M. Kappeler, R. A.
Palombit, and J. B. Silk, The Evolution of
Primate Societies. Chicago, IL, USA: University
of Chicago Press, 2012.
[8] J. F. Mitchell and D. A. Leopold, " The
marmoset monkey as a model for visual
neuroscience, " Neuroscience Res., vol.
93, pp. 20-46, Apr. 2015, doi: 10.1016/j.
neures.2015.01.008.
[9] A. G. Rosati and B. Hare, " Looking past the
model species: Diversity in gaze-following
skills across primates, " Curr. Opinion
Neurobiol., vol. 19, no. 1, pp. 45-51, Feb.
2009, doi: 10.1016/j.conb.2009.03.002.
[10] S. J. Eliades and X. Wang, " Comparison of
auditory-vocal interactions across multiple
types of vocalizations in marmoset
auditory cortex, " J. Neurophysiol., vol.
109, no. 6, pp. 1638-1657, Mar. 2013, doi:
10.1152/jn.00698.2012.
[11] T. Smith, " Individual olfactory signatures in
common marmosets (Callithrix jacchus), "
Amer. J. Primatol., vol. 68, no. 6, pp. 585-
604, Jun. 2006, doi: 10.1002/ajp.20254.
[12] R. R. Harrison, " A versatile integrated
circuit for the acquisition of biopotentials, "
in Proc. IEEE Custom Integr. Circuits
Conf., Piscataway, NJ, USA: IEEE
Press, 2007, pp. 115-122, doi: 10.1109/
CICC.2007.4405694.
[13] M. R. Pazhouhandeh, H. Kassiri, A. Shoukry,
I. Weisspapir, P. L. Carlen, and R. Genov,
" Opamp-less sub-n W/channel ∆-modulated
neural-adc with super-G X input impedance, "
IEEE Solid-State Circuits Lett., vol. 56, no. 5,
pp. 1565-1575, May 2021, doi: 10.1109/
JSSC.2020.3041289.
[14] C. Kim, S. Joshi, H. Courellis, J. Wang,
C. Miller, and G. Cauwenberghs, " SubnVrms-noise
sub-n W/channel ADC-direct
neural recording with 200-mV/ms transient
recovery through predictive digital
autoranging, " IEEE Solid-State Circuits
Lett., vol. 53, no. 11, pp. 3101-3110, Nov.
2018, doi: 10.1109/JSSC.2018.2870555.
[15] M. R. Pazhouhandeh, M. Chang, T. A. Valiante,
and R. Genov, " Track-and-zoom
neural analog-to-digital converter with
blind stimulation artifact rejection, " IEEE
Solid-State Circuits Lett., vol. 55, no. 7,
pp. 1984-1997, Jul. 2020, doi: 10.1109/
JSSC.2020.2991526.
[Online]. Available: https://www.
http://dx.doi.org/10.1109/JSSC.2009.2035551
http://dx.doi.org/10.1109/JSSC.2013.2284346
http://dx.doi.org/10.1109/JSSC.2013.2293773
http://dx.doi.org/10.1109/JSSC.2013.2293773
http://dx.doi.org/10.1016/j.neuron.2016.03.018
https://www.marmohub.org/2023-white-papers
https://www.marmohub.org/2023-white-papers
http://dx.doi.org/10.1016/j.neures.2015.01.008
http://dx.doi.org/10.1016/j.neures.2015.01.008
http://dx.doi.org/10.1016/j.conb.2009.03.002
http://dx.doi.org/10.1152/jn.00698.2012
http://dx.doi.org/10.1002/ajp.20254
http://dx.doi.org/10.1109/JSSC.2020.2991526
http://dx.doi.org/10.1109/JSSC.2020.2991526
IEEE Solid-States Circuits Magazine - Fall 2023
Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2023
Contents
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2023 - Contents
IEEE Solid-States Circuits Magazine - Fall 2023 - 2
IEEE Solid-States Circuits Magazine - Fall 2023 - 3
IEEE Solid-States Circuits Magazine - Fall 2023 - 4
IEEE Solid-States Circuits Magazine - Fall 2023 - 5
IEEE Solid-States Circuits Magazine - Fall 2023 - 6
IEEE Solid-States Circuits Magazine - Fall 2023 - 7
IEEE Solid-States Circuits Magazine - Fall 2023 - 8
IEEE Solid-States Circuits Magazine - Fall 2023 - 9
IEEE Solid-States Circuits Magazine - Fall 2023 - 10
IEEE Solid-States Circuits Magazine - Fall 2023 - 11
IEEE Solid-States Circuits Magazine - Fall 2023 - 12
IEEE Solid-States Circuits Magazine - Fall 2023 - 13
IEEE Solid-States Circuits Magazine - Fall 2023 - 14
IEEE Solid-States Circuits Magazine - Fall 2023 - 15
IEEE Solid-States Circuits Magazine - Fall 2023 - 16
IEEE Solid-States Circuits Magazine - Fall 2023 - 17
IEEE Solid-States Circuits Magazine - Fall 2023 - 18
IEEE Solid-States Circuits Magazine - Fall 2023 - 19
IEEE Solid-States Circuits Magazine - Fall 2023 - 20
IEEE Solid-States Circuits Magazine - Fall 2023 - 21
IEEE Solid-States Circuits Magazine - Fall 2023 - 22
IEEE Solid-States Circuits Magazine - Fall 2023 - 23
IEEE Solid-States Circuits Magazine - Fall 2023 - 24
IEEE Solid-States Circuits Magazine - Fall 2023 - 25
IEEE Solid-States Circuits Magazine - Fall 2023 - 26
IEEE Solid-States Circuits Magazine - Fall 2023 - 27
IEEE Solid-States Circuits Magazine - Fall 2023 - 28
IEEE Solid-States Circuits Magazine - Fall 2023 - 29
IEEE Solid-States Circuits Magazine - Fall 2023 - 30
IEEE Solid-States Circuits Magazine - Fall 2023 - 31
IEEE Solid-States Circuits Magazine - Fall 2023 - 32
IEEE Solid-States Circuits Magazine - Fall 2023 - 33
IEEE Solid-States Circuits Magazine - Fall 2023 - 34
IEEE Solid-States Circuits Magazine - Fall 2023 - 35
IEEE Solid-States Circuits Magazine - Fall 2023 - 36
IEEE Solid-States Circuits Magazine - Fall 2023 - 37
IEEE Solid-States Circuits Magazine - Fall 2023 - 38
IEEE Solid-States Circuits Magazine - Fall 2023 - 39
IEEE Solid-States Circuits Magazine - Fall 2023 - 40
IEEE Solid-States Circuits Magazine - Fall 2023 - 41
IEEE Solid-States Circuits Magazine - Fall 2023 - 42
IEEE Solid-States Circuits Magazine - Fall 2023 - 43
IEEE Solid-States Circuits Magazine - Fall 2023 - 44
IEEE Solid-States Circuits Magazine - Fall 2023 - 45
IEEE Solid-States Circuits Magazine - Fall 2023 - 46
IEEE Solid-States Circuits Magazine - Fall 2023 - 47
IEEE Solid-States Circuits Magazine - Fall 2023 - 48
IEEE Solid-States Circuits Magazine - Fall 2023 - 49
IEEE Solid-States Circuits Magazine - Fall 2023 - 50
IEEE Solid-States Circuits Magazine - Fall 2023 - 51
IEEE Solid-States Circuits Magazine - Fall 2023 - 52
IEEE Solid-States Circuits Magazine - Fall 2023 - 53
IEEE Solid-States Circuits Magazine - Fall 2023 - 54
IEEE Solid-States Circuits Magazine - Fall 2023 - 55
IEEE Solid-States Circuits Magazine - Fall 2023 - 56
IEEE Solid-States Circuits Magazine - Fall 2023 - 57
IEEE Solid-States Circuits Magazine - Fall 2023 - 58
IEEE Solid-States Circuits Magazine - Fall 2023 - 59
IEEE Solid-States Circuits Magazine - Fall 2023 - 60
IEEE Solid-States Circuits Magazine - Fall 2023 - 61
IEEE Solid-States Circuits Magazine - Fall 2023 - 62
IEEE Solid-States Circuits Magazine - Fall 2023 - 63
IEEE Solid-States Circuits Magazine - Fall 2023 - 64
IEEE Solid-States Circuits Magazine - Fall 2023 - 65
IEEE Solid-States Circuits Magazine - Fall 2023 - 66
IEEE Solid-States Circuits Magazine - Fall 2023 - 67
IEEE Solid-States Circuits Magazine - Fall 2023 - 68
IEEE Solid-States Circuits Magazine - Fall 2023 - 69
IEEE Solid-States Circuits Magazine - Fall 2023 - 70
IEEE Solid-States Circuits Magazine - Fall 2023 - 71
IEEE Solid-States Circuits Magazine - Fall 2023 - 72
IEEE Solid-States Circuits Magazine - Fall 2023 - 73
IEEE Solid-States Circuits Magazine - Fall 2023 - 74
IEEE Solid-States Circuits Magazine - Fall 2023 - 75
IEEE Solid-States Circuits Magazine - Fall 2023 - 76
IEEE Solid-States Circuits Magazine - Fall 2023 - 77
IEEE Solid-States Circuits Magazine - Fall 2023 - 78
IEEE Solid-States Circuits Magazine - Fall 2023 - 79
IEEE Solid-States Circuits Magazine - Fall 2023 - 80
IEEE Solid-States Circuits Magazine - Fall 2023 - 81
IEEE Solid-States Circuits Magazine - Fall 2023 - 82
IEEE Solid-States Circuits Magazine - Fall 2023 - 83
IEEE Solid-States Circuits Magazine - Fall 2023 - 84
IEEE Solid-States Circuits Magazine - Fall 2023 - 85
IEEE Solid-States Circuits Magazine - Fall 2023 - 86
IEEE Solid-States Circuits Magazine - Fall 2023 - 87
IEEE Solid-States Circuits Magazine - Fall 2023 - 88
IEEE Solid-States Circuits Magazine - Fall 2023 - 89
IEEE Solid-States Circuits Magazine - Fall 2023 - 90
IEEE Solid-States Circuits Magazine - Fall 2023 - 91
IEEE Solid-States Circuits Magazine - Fall 2023 - 92
IEEE Solid-States Circuits Magazine - Fall 2023 - 93
IEEE Solid-States Circuits Magazine - Fall 2023 - 94
IEEE Solid-States Circuits Magazine - Fall 2023 - 95
IEEE Solid-States Circuits Magazine - Fall 2023 - 96
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com