IEEE Solid-States Circuits Magazine - Fall 2023 - 28

[53] A. R. Aslam and M. A. B. Altaf, " A 10.13
nJ/classification 2-channel deep neural
network based SoC for negative emotion
outburst detection of autistic children, "
IEEE Trans. Biomed. Circuits Syst., vol. 15,
no. 5, pp. 1039-1052, Oct. 2021, doi:
10.1109/TBCAS.2021.3113613.
[54] J. Liu et al.,
" BioAIP: A reconfigurable
biomedical AI processor with adaptive
learning for versatile intelligent health
monitoring, " in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), vol. 64. Piscataway,
NJ, USA: IEEE Press, 2021, pp. 62-64, doi:
10.1109/ISSCC42613.2021.9365996.
[55] U. Shin et al., " A 256-channel 0.227 nJ/class
versatile brain activity classification and
closed-loop neuromodulation SoC with
0.004 mm 2-1.51 nW/channel fast-settling
highly multiplexed mixed-signal frontend, "
in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC), vol. 65. Piscataway, NJ,
USA: IEEE Press, 2022, pp. 338-340, doi:
10.1109/ISSCC42614.2022.9731776.
[56] S.-Y. Lee, Y.-W. Hung, Y.-T. Chang, C.-C.
Lin, and G.-S. Shieh, " RISC-V CNN coprocessor
for real-time epilepsy detection
in wearable application, " IEEE Trans.
Biomed. Circuits Syst., vol. 15, no. 4, pp.
679-691, Aug. 2021, doi: 10.1109/TBCAS.
2021.3092744.
[57] Y. Jia et al., " A trimodal wireless implantable
neural interface system-on-chip, " in
Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2020, pp. 414-416, doi: 10.1109/
ISSCC19947.2020.9063065.
[58] M. A. A. Ibrahim and M. Onabajo, " A lowpower
BFSK transmitter architecture for
biomedical applications, " IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 67, no. 5,
pp. 1527-1540, May 2020, doi: 10.1109/
TCSI.2019.2959010.
[59] M.-C. Lee et al., " A CMOS MedRadio transceiver
with supply-modulated power saving
technique for an implantable brain-
Machine interface system, " IEEE Solid-State
Circuits Lett., vol. 54, no. 6, pp. 1541-1552,
Jun. 2019, doi: 10.1109/JSSC.2019.2899521.
[60] Y. Guo, Y. Li, Z. Weng, H. Jiang, and Z.
Wang,
" A 0.66mW 400 MHz/900 MHz
transmitter IC for in-body bio-sensing applications, "
IEEE Trans. Biomed. Circuits
Syst., vol. 16, no. 2, pp. 252-265, Apr.
2022, doi: 10.1109/TBCAS.2022.3154793.
[61] J. Lee et al., " Neural recording and stimulation
using wireless networks of microimplants, "
Nature Electron., vol. 4, pp.
604-614, Aug. 2021, doi: 10.1038/s41928021-00631-8.
[62]
K. Haroush and Z. Williams, " Neuronal
prediction of opponent's behavior during
cooperative social interchange in primates, "
Cell, vol. 160, no. 6, pp. 1233-1245,
Mar. 2015, doi: 10.1016/j.cell.2015.01.045.
[63] C. Minami, T. Shimizu, and A. Mitani,
" Neural activity in the prelimbic and infralimbic
cortices of freely moving rats
during social interaction: Effect of isolation
rearing, " PLoS One, vol. 12, no. 5, May
2017, Art. no. e0176740, doi: 10.1371/journal.pone.0176740.
[64]
IEEE Standard for Local and Metropolitan
Area Networks - Part 15.6: Wireless Body
Area Networks, IEEE Standard 802.15.62012,
Feb. 2012.
[65] M. Rahman, M. Elbadry, and R. Harjani,
" An IEEE 802.15.6 standard compliant 2.5
nJ/bit multiband WBAN transmitter using
phase multiplexing and injection locking, "
IEEE Solid-State Circuits Lett., vol.
50, no. 5, pp. 1126-1136, May 2015, doi:
10.1109/JSSC.2015.2402214.
[66] A. Wong et al., " A 1V 5mA multimode IEEE
802.15.6/bluetooth low-energy WBAN
28
FALL 2023
transceiver
for biotelemetry applications, "
in Proc. IEEE Int. Solid-State Circuits
Conf. (ISSCC), Feb. 2012, pp. 300-302, doi:
10.1109/ISSCC.2012.6177022.
[67] Y.-H. Liu et al., " A 1.9nJ/b 2.4GHz multistandard
(Bluetooth Low Energy/Zigbee/
IEEE802. 15.6) transceiver for personal/
body-area networks, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Piscataway, NJ, USA: IEEE
Press, 2013, pp. 446-447, doi: 10.1109/
ISSCC.2013.6487808.
[68] H. Huang et al., " A 2 nJ/bit, 2.3% FSK error
fully integrated sub-2.4 GHz transmitter
with duty-cycle controlled PA for medical
band, " IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 69, no. 12, pp. 5018-5029, Dec.
2022, doi: 10.1109/TCSI.2022.3202660.
[69] X. Liu et al., " A fully integrated wireless
compressed sensing neural signal acquisition
system for chronic recording
and brain machine interface, " IEEE Trans.
Biomed. Circuits Syst., vol. 10, no. 4, pp.
874-883, Aug. 2016, doi: 10.1109/TBCAS.2016.2574362.
[70]
S.-J. Kim et al., " A sub-nW/Ch analog
front-end for D-neural recording with
spike-driven data compression, " IEEE
Trans. Biomed. Circuits Syst., vol. 13, no.
1, pp. 1-14, Feb. 2019, doi: 10.1109/TBCAS.2018.2880257.
[71]
N. Even-Chen et al., " Power-saving design
opportunities for wireless intracortical
brain-Computer interfaces, " Nature
Biomed. Eng., vol. 4, no. 10, pp. 984-
996, Oct. 2020, doi: 10.1038/s41551-0200595-9.
[72]
S. Geng, D. Liu, Y. Li, H. Zhuo, W. Rhee,
and Z. Wang, " A 13.3 mW 500 Mb/s IR-UWB
transceiver with link margin enhancement
technique for meter-range communications, "
IEEE Solid-State Circuits Lett.,
vol. 50, no. 3, pp. 669-678, Mar. 2015, doi:
10.1109/JSSC.2015.2393815.
[73] J. Ko and R. Gharpurey, " A pulsed
UWB transceiver in 65 nm CMOS with
four-element beamforming for 1 Gbps
meter-range WPAN applications, " IEEE
Solid-State Circuits Lett., vol. 51, no. 5,
pp. 1177-1187, May 2016, doi: 10.1109/
JSSC.2016.2520402.
[74] N.-S. Kim and J. M. Rabaey, " A high datarate
energy-efficient triple-channel UWBbased
cognitive radio, " IEEE Solid-State Circuits
Lett., vol. 51, no. 4, pp. 809-820, Apr.
2016, doi: 10.1109/JSSC.2015.2512934.
[75] G. Lee, J. Park, J. Jang, T. Jung, and T. W.
Kim, " An IR-UWB CMOS transceiver for
high-data-rate, low-power, and shortrange
communication, " IEEE Solid-State
Circuits Lett., vol. 54, no. 8, pp. 2163-
2174, Aug. 2019, doi: 10.1109/JSSC.2019.
2914584.
[76] G. Lee, S. Lee, J.-H. Kim, and T. W. Kim,
" A 1.125 Gb/s 28mW 2m-radio-range IRUWB
CMOS transceiver, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC), vol.
64. Piscataway, NJ, USA: IEEE Press, 2021,
pp. 302-304, doi: 10.1109/ISSCC42613.
2021.9366044.
[77] M. Song et al., " A 1.66 Gb/s and 5.8 pJ/b
transcutaneous IR-UWB telemetry system
with hybrid impulse modulation for
intracortical brain-computer interfaces, "
in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), vol. 65. Piscataway, NJ, USA: IEEE
Press, 2022, pp. 394-396, doi: 10.1109/
ISSCC42614.2022.9731608.
[78] J. Lei et al., " A 1.8Gb/s, 2.3pJ/bit, crystal-less
IR-UWB transmitter for neural
implants, " in Proc.
IEEE Int. Solid-State
Circuits Conf. (ISSCC), 2023, pp. 464-466,
doi: 10.1109/ISSCC42615.2023.10067667.
IEEE SOLID-STATE CIRCUITS MAGAZINE
[79] M. Song et al., " A millimeter-scale crystalless
MICS transceiver for insertable smart
pills, " IEEE Trans. Biomed. Circuits Syst.,
vol. 14, no. 6, pp. 1218-1229, Dec. 2020,
doi: 10.1109/TBCAS.2020.3036905.
[80] H. Rahmani and A. Babakhani, " A wirelessly
powered reconfigurable FDD radio
with on-chip antennas for multi-site
neural interfaces, " IEEE Solid-State Circuits
Lett., vol. 56, no. 10, pp. 3177-3190, Oct.
2021, doi: 10.1109/JSSC.2021.3076014.
[81] C. Yang et al., " Neural dielet: A 0.4 mm3
battery-less crystal-less neural-recording
system on die achieving 1.6 cm backscatter
range with 2 mm ×2 mm on-chip antenna, "
IEEE Trans. Biomed. Circuits Syst.,
vol. 17, no. 1, pp. 54-66, Feb. 2023, doi:
10.1109/TBCAS.2022.3232783.
[82] W. Li, Y. Duan, and J. Rabaey, " A 200-Mb/s
energy efficient transcranial transmitter
using inductive coupling, " IEEE Trans.
Biomed. Circuits Syst., vol. 13, no. 2, pp.
435-443, Apr. 2019, doi: 10.1109/TBCAS.
2018.2889802.
[83] T. C. Chang, M. L. Wang, J. Charthad, M. J.
Weber, and A. Arbabian, " A 30.5mm3 fully
packaged implantable device with duplex
ultrasonic data and power links achieving
95kb/s with <10-4 ber at 8.5cm depth, "
in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), 2017, pp. 460-461, doi: 10.1109/
ISSCC.2017.7870460.
[84] K. A. Ng et al., " A wireless multi-channel
peripheral nerve signal acquisition
system-on-chip, " IEEE Solid-State Circuits
Lett., vol. 54, no. 8, pp. 2266-2280, Aug.
2019, doi: 10.1109/JSSC.2019.2909158.
[85] C. Lee et al., " A miniaturized wireless
neural implant with body-coupled data
transmission and power delivery for freely
behaving animals, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC), 2022,
vol. 65, pp. 1-3, doi: 10.1109/ISSCC42614.
2022.9731733.
[86] Z. Chen, M.-K. Law, P.-I. Mak, W.-H. Ki,
and R. P. Martins, " Fully integrated inductor-less
flipping-capacitor rectifier
for piezoelectric energy harvesting, " IEEE
Solid-State Circuits Lett., vol. 52, no. 12,
pp. 3168-3180, Dec. 2017, doi: 10.1109/
JSSC.2017.2750329.
[87] M. M. Ghanbari et al., " A sub-mm3 ultrasonic
free-floating implant for multi-mote
neural recording, " IEEE Solid-State Circuits
Lett., vol. 54, no. 11, pp. 3017-3030, Nov.
2019, doi: 10.1109/JSSC.2019.2936303.
[88] C. Xie, G. Zhao, Y. Ma, M.-K. Law, and
M. Zhang, " Fully integrated frequencytuning
switched-capacitor
rectifier
for
piezoelectric energy harvesting, " IEEE
Solid-State Circuits Lett., vol. 58, no. 8,
pp. 2337-2348, Aug. 2023, doi: 10.1109/
JSSC.2023.3261301.
[89] D. Ye, Y. Wang, Y. Xiang, L. Lyu, H. Min,
and C.-J. R. Shi, " A wireless power and data
transfer receiver achieving 75.4% effective
power conversion efficiency and supporting
0.1% modulation depth for ASK
demodulation, " IEEE Solid-State Circuits
Lett., vol. 55, no. 5, pp. 1386-1400, May
2020, doi: 10.1109/JSSC.2019.2943871.
[90] Q. Shi, T. Wang, and C. Lee, " MEMS based
broadband piezoelectric ultrasonic energy
harvester (PUEH) for enabling self-powered
implantable biomedical devices, " Scientific
Rep., vol. 6, no. 1, pp. 1-10, 2016, doi:
10.1038/srep24946.
[91] D. K. Piech et al., " A wireless millimetrescale
implantable neural stimulator with
ultrasonically powered bidirectional communication, "
Nature Biomed. Eng., vol. 4,
no. 2, pp. 207-222, Feb. 2020, doi: 10.1038/
s41551-020-0518-9.
http://dx.doi.org/10.1109/TBCAS.2020.3036905 http://dx.doi.org/10.1109/JSSC.2021.3076014 http://dx.doi.org/10.1109/TBCAS.2018.2889802 http://dx.doi.org/10.1109/TBCAS.2016.2574362 http://dx.doi.org/10.1109/TBCAS.2018.2889802 http://dx.doi.org/10.1109/TBCAS.2016.2574362 http://dx.doi.org/10.1109/TBCAS.2021.3092744 http://dx.doi.org/10.1109/TBCAS.2021.3092744 http://dx.doi.org/10.1109/ISSCC19947.2020.9063065 http://dx.doi.org/10.1109/ISSCC19947.2020.9063065 http://dx.doi.org/10.1038/s41551-020-0595-9 http://dx.doi.org/10.1038/s41551-020-0595-9 http://dx.doi.org/10.1109/JSSC.2019.2909158 http://dx.doi.org/10.1109/TCSI.2019.2959010 http://dx.doi.org/10.1109/TCSI.2019.2959010 http://dx.doi.org/10.1109/ISSCC42614.2022.9731733 http://dx.doi.org/10.1109/JSSC.2015.2393815 http://dx.doi.org/10.1109/ISSCC42614.2022.9731733 http://dx.doi.org/10.1109/JSSC.2019.2899521 http://dx.doi.org/10.1109/JSSC.2016.2520402 http://dx.doi.org/10.1109/JSSC.2017.2750329 http://dx.doi.org/10.1109/JSSC.2016.2520402 http://dx.doi.org/10.1109/JSSC.2017.2750329 http://dx.doi.org/10.1109/TBCAS.2022.3154793 http://dx.doi.org/10.1109/JSSC.2019.2936303 http://dx.doi.org/10.1038/s41928-021-00631-8 http://dx.doi.org/10.1038/s41928-021-00631-8 http://dx.doi.org/10.1109/JSSC.2019.2914584 http://dx.doi.org/10.1109/JSSC.2023.3261301 http://dx.doi.org/10.1016/j.cell.2015.01.045 http://dx.doi.org/10.1109/JSSC.2019.2914584 http://dx.doi.org/10.1109/JSSC.2023.3261301 http://dx.doi.org/10.1371/journal.pone.0176740 http://dx.doi.org/10.1371/journal.pone.0176740 http://dx.doi.org/10.1109/JSSC.2019.2943871 http://dx.doi.org/10.1038/srep24946 http://dx.doi.org/10.1109/JSSC.2015.2402214 http://dx.doi.org/10.1038/s41551-020-0518-9 http://dx.doi.org/10.1109/ISSCC42615.2023.10067667 http://dx.doi.org/10.1038/s41551-020-0518-9

IEEE Solid-States Circuits Magazine - Fall 2023

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2023

Contents
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2023 - Contents
IEEE Solid-States Circuits Magazine - Fall 2023 - 2
IEEE Solid-States Circuits Magazine - Fall 2023 - 3
IEEE Solid-States Circuits Magazine - Fall 2023 - 4
IEEE Solid-States Circuits Magazine - Fall 2023 - 5
IEEE Solid-States Circuits Magazine - Fall 2023 - 6
IEEE Solid-States Circuits Magazine - Fall 2023 - 7
IEEE Solid-States Circuits Magazine - Fall 2023 - 8
IEEE Solid-States Circuits Magazine - Fall 2023 - 9
IEEE Solid-States Circuits Magazine - Fall 2023 - 10
IEEE Solid-States Circuits Magazine - Fall 2023 - 11
IEEE Solid-States Circuits Magazine - Fall 2023 - 12
IEEE Solid-States Circuits Magazine - Fall 2023 - 13
IEEE Solid-States Circuits Magazine - Fall 2023 - 14
IEEE Solid-States Circuits Magazine - Fall 2023 - 15
IEEE Solid-States Circuits Magazine - Fall 2023 - 16
IEEE Solid-States Circuits Magazine - Fall 2023 - 17
IEEE Solid-States Circuits Magazine - Fall 2023 - 18
IEEE Solid-States Circuits Magazine - Fall 2023 - 19
IEEE Solid-States Circuits Magazine - Fall 2023 - 20
IEEE Solid-States Circuits Magazine - Fall 2023 - 21
IEEE Solid-States Circuits Magazine - Fall 2023 - 22
IEEE Solid-States Circuits Magazine - Fall 2023 - 23
IEEE Solid-States Circuits Magazine - Fall 2023 - 24
IEEE Solid-States Circuits Magazine - Fall 2023 - 25
IEEE Solid-States Circuits Magazine - Fall 2023 - 26
IEEE Solid-States Circuits Magazine - Fall 2023 - 27
IEEE Solid-States Circuits Magazine - Fall 2023 - 28
IEEE Solid-States Circuits Magazine - Fall 2023 - 29
IEEE Solid-States Circuits Magazine - Fall 2023 - 30
IEEE Solid-States Circuits Magazine - Fall 2023 - 31
IEEE Solid-States Circuits Magazine - Fall 2023 - 32
IEEE Solid-States Circuits Magazine - Fall 2023 - 33
IEEE Solid-States Circuits Magazine - Fall 2023 - 34
IEEE Solid-States Circuits Magazine - Fall 2023 - 35
IEEE Solid-States Circuits Magazine - Fall 2023 - 36
IEEE Solid-States Circuits Magazine - Fall 2023 - 37
IEEE Solid-States Circuits Magazine - Fall 2023 - 38
IEEE Solid-States Circuits Magazine - Fall 2023 - 39
IEEE Solid-States Circuits Magazine - Fall 2023 - 40
IEEE Solid-States Circuits Magazine - Fall 2023 - 41
IEEE Solid-States Circuits Magazine - Fall 2023 - 42
IEEE Solid-States Circuits Magazine - Fall 2023 - 43
IEEE Solid-States Circuits Magazine - Fall 2023 - 44
IEEE Solid-States Circuits Magazine - Fall 2023 - 45
IEEE Solid-States Circuits Magazine - Fall 2023 - 46
IEEE Solid-States Circuits Magazine - Fall 2023 - 47
IEEE Solid-States Circuits Magazine - Fall 2023 - 48
IEEE Solid-States Circuits Magazine - Fall 2023 - 49
IEEE Solid-States Circuits Magazine - Fall 2023 - 50
IEEE Solid-States Circuits Magazine - Fall 2023 - 51
IEEE Solid-States Circuits Magazine - Fall 2023 - 52
IEEE Solid-States Circuits Magazine - Fall 2023 - 53
IEEE Solid-States Circuits Magazine - Fall 2023 - 54
IEEE Solid-States Circuits Magazine - Fall 2023 - 55
IEEE Solid-States Circuits Magazine - Fall 2023 - 56
IEEE Solid-States Circuits Magazine - Fall 2023 - 57
IEEE Solid-States Circuits Magazine - Fall 2023 - 58
IEEE Solid-States Circuits Magazine - Fall 2023 - 59
IEEE Solid-States Circuits Magazine - Fall 2023 - 60
IEEE Solid-States Circuits Magazine - Fall 2023 - 61
IEEE Solid-States Circuits Magazine - Fall 2023 - 62
IEEE Solid-States Circuits Magazine - Fall 2023 - 63
IEEE Solid-States Circuits Magazine - Fall 2023 - 64
IEEE Solid-States Circuits Magazine - Fall 2023 - 65
IEEE Solid-States Circuits Magazine - Fall 2023 - 66
IEEE Solid-States Circuits Magazine - Fall 2023 - 67
IEEE Solid-States Circuits Magazine - Fall 2023 - 68
IEEE Solid-States Circuits Magazine - Fall 2023 - 69
IEEE Solid-States Circuits Magazine - Fall 2023 - 70
IEEE Solid-States Circuits Magazine - Fall 2023 - 71
IEEE Solid-States Circuits Magazine - Fall 2023 - 72
IEEE Solid-States Circuits Magazine - Fall 2023 - 73
IEEE Solid-States Circuits Magazine - Fall 2023 - 74
IEEE Solid-States Circuits Magazine - Fall 2023 - 75
IEEE Solid-States Circuits Magazine - Fall 2023 - 76
IEEE Solid-States Circuits Magazine - Fall 2023 - 77
IEEE Solid-States Circuits Magazine - Fall 2023 - 78
IEEE Solid-States Circuits Magazine - Fall 2023 - 79
IEEE Solid-States Circuits Magazine - Fall 2023 - 80
IEEE Solid-States Circuits Magazine - Fall 2023 - 81
IEEE Solid-States Circuits Magazine - Fall 2023 - 82
IEEE Solid-States Circuits Magazine - Fall 2023 - 83
IEEE Solid-States Circuits Magazine - Fall 2023 - 84
IEEE Solid-States Circuits Magazine - Fall 2023 - 85
IEEE Solid-States Circuits Magazine - Fall 2023 - 86
IEEE Solid-States Circuits Magazine - Fall 2023 - 87
IEEE Solid-States Circuits Magazine - Fall 2023 - 88
IEEE Solid-States Circuits Magazine - Fall 2023 - 89
IEEE Solid-States Circuits Magazine - Fall 2023 - 90
IEEE Solid-States Circuits Magazine - Fall 2023 - 91
IEEE Solid-States Circuits Magazine - Fall 2023 - 92
IEEE Solid-States Circuits Magazine - Fall 2023 - 93
IEEE Solid-States Circuits Magazine - Fall 2023 - 94
IEEE Solid-States Circuits Magazine - Fall 2023 - 95
IEEE Solid-States Circuits Magazine - Fall 2023 - 96
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com