IEEE Solid-States Circuits Magazine - Fall 2023 - 39
Dec. 2013, doi: 10.1038/nprot.2013.
158.
[20] R. Scharf, T. Tsunematsu, N. McAlinden, M. D.
Dawson, S. Sakata, and K. Mathieson, " Depthspecific
optogenetic control in vivo with a
scalable, high-density μLED neural probe, "
Scientific Rep., vol. 6, no. 1, Jun. 2016, Art.
no. 28381, doi: 10.1038/srep28381.
[21] T. Yousefi et al., " An energy-efficient
optically-enhanced highly-linear implantable
wirelessly-powered bidirectional optogenetic
neuro-stimulator, " IEEE Trans.
Biomed. Circuits Syst., vol. 14, no. 6, pp.
1274-1286, Dec. 2020, doi: 10.1109/TBCAS.
2020.3026937.
[22] H.-M. Lee, K. Y. Kwon, W. Li, and M.
Ghovanloo, " A power-efficient switchedcapacitor
stimulating system for electrical/optical
deep brain stimulation, "
IEEE J. Solid-State Circuits, vol. 50, no.
1, pp. 360-374, Jan. 2015, doi: 10.1109/
JSSC.2014.2355814.
[23] L. Zhao, Y. Gong, W. Shi, R. Stephany, W.
Li, and Y. Jia, " A wireless implantable
opto-electro neural
interface ASIC for
simultaneous neural recording and stimulation, "
in Proc. IEEE Custom Integr. Circuits
Conf. (CICC), San Antonio, TX, USA:
IEEE, Apr. 2023, pp. 1-2, doi: 10.1109/
CICC57935.2023.10121181.
[24] M. Denker et al., " LFP beta amplitude is
linked to mesoscopic spatio-temporal
phase patterns, " Scientific Rep., vol. 8, no.
1, Mar. 2018, Art. no. 5200, doi: 10.1038/
s41598-018-22990-7.
[25] A. Goyal et al., " Functionally distinct high
and low theta oscillations in the human
hippocampus, " Nature Commun., vol.
11, no. 1, May 2020, Art. no. 2469, doi:
10.1038/s41467-020-15670-6.
[26] T. L. Massey, S. R. Santacruz, J. F. Hou, K.
S. J. Pister, J. M. Carmena, and M. M. Maharbiz,
" A high-density carbon fiber neural
recording array technology, " J. Neural
Eng., vol. 16, no. 1, Feb. 2019, Art. no.
016024, doi: 10.1088/1741-2552/aae8d9.
[27] G. Buzsáki and A. Draguhn, " Neuronal oscillations
in cortical networks, " Science,
vol. 304, no. 5679, pp. 1926-1929, Jun.
2004, doi: 10.1126/science.1099745.
[28] S. Waldert, R. N. Lemon, and A. Kraskov,
" Influence of spiking activity on cortical
local field potentials: Influence of spikes
on local field potential, " J. Physiol., vol. 591,
no. 21, pp. 5291-5303, Nov. 2013, doi:
10.1113/jphysiol.2013.258228.
[29] H. Chandrakumar and D. Markovic, " A high
dynamic-range neural recording chopper
amplifier for simultaneous neural recording
and stimulation, " IEEE J. Solid-State
Circuits, vol. 52, no. 3, pp. 645-656, Mar.
2017, doi: 10.1109/JSSC.2016.2645611.
[30] H. Chandrakumar and D. Markovic, " An
80-mVpp linear-input range, 1.6-GΩ input
impedance,
low-power chopper amplifier
for closed-loop neural recording
that is tolerant to 650-mVpp commonmode
interference, "
IEEE J. Solid-State
Circuits, vol. 52, no. 11, pp. 1-18, 2017,
doi: 10.1109/JSSC.2017.2753824.
[31] R. R. Harrison and C. Charles, " A low-power
low-noise CMOS for amplifier neural recording
applications, " IEEE J. Solid-State
Circuits, vol. 38, no. 6, pp. 958-965, Jun.
2003, doi: 10.1109/JSSC.2003.811979.
[32] W. Wattanapanitch, M. Fee, and R.
Sarpeshkar,
" An energy-efficient micropower
neural recording amplifier, " IEEE
Trans. Biomed. Circuits Syst., vol. 1, no.
2, pp. 136-147, Jun. 2007, doi: 10.1109/
TBCAS.2007.907868.
[33] F. Zhang, J. Holleman, and B. P. Otis,
" Design of ultra-low power biopotential
amplifiers for biosignal acquisition applications, "
IEEE Trans. Biomed. Circuits
Syst., vol. 6, no. 4, pp. 344-355, Aug. 2012,
doi: 10.1109/TBCAS.2011.2177089.
[34] V. Majidzadeh, A. Schmid, and Y. Leblebici,
" Energy efficient low-noise neural
recording amplifier with enhanced noise
efficiency factor, " IEEE Trans. Biomed. Circuits
Syst., vol. 5, no. 3, pp. 262-271, Jun.
2011, doi: 10.1109/TBCAS.2010.2078815.
[35] K. A. Ng and Y. P. Xu, " A low-power, high
CMRR neural amplifier system employing
CMOS inverter-based OTAs with CMFB
through supply rails, " IEEE J. Solid-State
Circuits, vol. 51, no. 3, pp. 724-737, Mar.
2016, doi: 10.1109/JSSC.2015.2512935.
[36] K. A. Ng and P. K. Chan, " A CMOS analog
front-end IC for portable EEG/ECG monitoring
applications, " IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 52, no. 11, pp.
2335-2347, Nov. 2005, doi: 10.1109/TCSI.
2005.854141.
[37] B. Gosselin, M. Sawan, and C. A. Chapman,
" A low-power integrated bioamplifier
with active low-frequency suppression, "
IEEE Trans. Biomed. Circuits Syst.,
vol. 1, no. 3, pp. 184-192, Sep. 2007, doi:
10.1109/TBCAS.2007.914490.
[38] R. F. Yazicioglu, P. Merken, R. Puers,
and C. Van Hoof, " Low-power low-noise
8-channel EEG front-end ASIC for ambulatory
acquisition systems, " in Proc.
IEEE 32nd Eur. Solid-State Circuits Conf.,
Montreux, Switzerland: IEEE, Sep. 2006,
pp. 247-250, doi: 10.1109/ESSCIR.2006.
307577.
[39] R. Muller, S. Gambini, and J. M. Rabaey,
" A 0.013 mm2, 5 μW, DC-coupled neural
signal acquisition IC with 0.5 V supply, "
IEEE J. Solid-State Circuits, vol. 47, no. 1,
pp. 232-243, Jan. 2012, doi: 10.1109/
JSSC.2011.2163552.
[40] A. Bagheri, M. T. Salam, J. L. Perez
Velazquez, and R. Genov, " Low-frequency
noise and offset rejection in DC-coupled
neural amplifiers: A review and digitally-assisted
design tutorial, " IEEE Trans.
Biomed. Circuits Syst., vol. 11, no. 1, pp.
161-176, Feb. 2017, doi: 10.1109/TBCAS.
2016.2539518.
[41] M. Zamani, Y. Rezaeiyan, H. A. Huynh,
M. Ronchini, H. Farkhani, and F. Moradi,
" A 2.3-μW capacitively coupled chopperstabilized
neural amplifier with input
impedance of 6.7 GΩ, " IEEE Solid-State
Circuits Lett., vol. 4, pp. 133-136, Jul.
2021, doi: 10.1109/LSSC.2021.3094237.
[42] L. Shen, N. Lu, and N. Sun, " A 1-V 0.25- μW
inverter stacking amplifier with 1.07
noise efficiency factor, " IEEE J. Solid-State
Circuits, vol. 53, no. 3, pp. 896-905, Mar.
2018, doi: 10.1109/JSSC.2017.2786724.
[43] S. Mondal and D. A. Hall, " A 13.9-nA
ECG amplifier achieving 0.86/0.99 NEF/
PEF using AC-coupled OTA-stacking, "
IEEE J. Solid-State Circuits, vol. 55, no.
2, pp. 414-425, Feb. 2020, doi: 10.1109/
JSSC.2019.2957193.
[44] D. Luo, M. Zhang, and Z. Wang, " A lownoise
chopper amplifier designed for
multi-channel neural signal acquisition, "
IEEE J. Solid-State Circuits, vol. 54, no. 8,
pp. 2255-2265, Aug. 2019, doi: 10.1109/
JSSC.2019.2913101.
[45] Q. Fan, F. Sebastiano, J. H. Huijsing, and
K. A. A. Makinwa, " A 1.8 μW 60 nV/√ capacitively-coupled
chopper instrumentation
amplifier in 65 nm CMOS for wireless
sensor nodes, " IEEE J. Solid-State Circuits,
vol. 46, no. 7, pp. 1534-1543, Jul. 2011,
doi: 10.1109/JSSC.2011.2143610.
[46] W. Jiang, V. Hokhikyan, H. Chandrakumar,
V. Karkare, and D. Markovic, " A ±50-mV
linear-input-range VCO-based neuralrecording
front-end with digital nonlinearity
correction, " IEEE J. Solid-State
Circuits, vol. 52, no. 1, pp. 173-184, Jan.
2017, doi: 10.1109/JSSC.2016.2624989.
[47] H. Chandrakumar and D. Markovic, " A
15.2-ENOB 5-kHz BW 4.5- μW Chopped CT
ΔΣ-ADC for artifact-tolerant neural recording
front ends, " IEEE J. Solid-State Circuits,
vol. 53, no. 12, pp. 3470-3483, Dec.
2018, doi: 10.1109/JSSC.2018.2876468.
[48] J.-S. Bang, H. Jeon, M. Je, and G.-H.
Cho, " 6.5µW 92.3DB-DR biopotentialrecording
front-end with 360MVPP linear
input range, " in Proc. IEEE Symp.
VLSI Circuits, Honolulu, HI, USA: IEEE,
Jun. 2018, pp. 239-240, doi: 10.1109/
VLSIC.2018.8502264.
[49] C. Lee et al., " A 6.5-μW 10-kHz BW 80.4-dB
SNDR Gm-C-based CT Δ∑ modulator with
a feedback-assisted Gm linearization for
artifact-tolerant neural
recording, " IEEE
J. Solid-State Circuits, vol. 55, no. 11, pp.
2889-2901, Nov. 2020, doi: 10.1109/JSSC.
2020.3018478.
[50] H. Jeon, J.-S. Bang, Y. Jung, I. Choi, and
M. Je, " A high DR, DC-coupled, time-based
neural-recording IC with degeneration
R-DAC for bidirectional neural interface, "
IEEE J. Solid-State Circuits, vol. 54, no. 10,
pp. 2658-2670, Oct. 2019, doi: 10.1109/
JSSC.2019.2930903.
[51] W. Zhao et al., " A 0.025-mm2 0.8-V 78.5-dB
SNDR VCO-based sensor readout circuit
in a hybrid PLL-ΔΣM structure, " IEEE
J. Solid-State Circuits, vol. 55, no. 3, pp. 666-
679, Mar. 2020, doi: 10.1109/JSSC.2019.
2959479.
[52] J. Huang and P. P. Mercier, " A 178.9-dB
FoM 128-dB SFDR VCO-based AFE for ExG
readouts with a calibration-free differential
pulse code modulation technique, "
IEEE J. Solid-State Circuits, vol. 56, no. 11,
pp. 3236-3246, Nov. 2021, doi: 10.1109/
JSSC.2021.3112635.
[53] C. Kim, S. Joshi, H. Courellis, J. Wang, C.
Miller, and G. Cauwenberghs, " A 92dB dynamic
range sub-μVrms-noise 0.8μW/ch
neural-recording ADC array with predictive
digital autoranging, " in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC), San Francisco,
CA, USA: IEEE, Feb. 2018, pp. 470-
472, doi: 10.1109/ISSCC.2018.8310388.
[54] C. Pochet and D. A. Hall, " A pseudovirtual
ground feedforwarding technique
enabling linearization and higher order
noise shaping in VCO-based ΔΣ modulators, "
IEEE J. Solid-State Circuits, vol. 57,
no. 12, pp. 3746-3756, Dec. 2022, doi:
10.1109/JSSC.2022.3202040.
[55] S. Lee et al., " A 0.7V 17fJ/Step-FOMW
178.1dB-FOMSNDR 10kHz-BW 560mVPP trueExG
biopotential acquisition system with
parasitic-insensitive 421MΩ input impedance
in 0.18μm CMOS, " in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), San Francisco,
CA, USA: IEEE, Feb. 2022, pp. 336-338,
doi: 10.1109/ISSCC42614.2022.9731114.
[56] M. Reza Pazhouhandeh, M. Chang, T. A.
Valiante, and R. Genov, " Track-and-zoom
neural analog-to-digital converter with
blind stimulation artifact
rejection, "
IEEE J. Solid-State Circuits, vol. 55, no. 7,
pp. 1984-1997, Jul. 2020, doi: 10.1109/
JSSC.2020.2991526.
[57] M. ElAnsary et al., " Bidirectional peripheral
nerve interface with 64 second-order
OPAMP-less ΔΣ ADCs and fully integrated
wireless power/data transmission, " IEEE
J. Solid-State Circuits, vol. 56, no. 11,
pp. 3247-3262, Nov. 2021, doi: 10.1109/
JSSC.2021.3113354.
[58] M. Z. Straayer and M. H. Perrott, " A 12-bit,
10-MHz bandwidth, continuous-time ΔΣ ADC
with a 5-bit, 950-MS/s VCO-based quantizer, "
IEEE J. Solid-State Circuits, vol. 43, no. 4,
IEEE SOLID-STATE CIRCUITS MAGAZINE
FALL 2023
39
IEEE Solid-States Circuits Magazine - Fall 2023
Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2023
Contents
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2023 - Contents
IEEE Solid-States Circuits Magazine - Fall 2023 - 2
IEEE Solid-States Circuits Magazine - Fall 2023 - 3
IEEE Solid-States Circuits Magazine - Fall 2023 - 4
IEEE Solid-States Circuits Magazine - Fall 2023 - 5
IEEE Solid-States Circuits Magazine - Fall 2023 - 6
IEEE Solid-States Circuits Magazine - Fall 2023 - 7
IEEE Solid-States Circuits Magazine - Fall 2023 - 8
IEEE Solid-States Circuits Magazine - Fall 2023 - 9
IEEE Solid-States Circuits Magazine - Fall 2023 - 10
IEEE Solid-States Circuits Magazine - Fall 2023 - 11
IEEE Solid-States Circuits Magazine - Fall 2023 - 12
IEEE Solid-States Circuits Magazine - Fall 2023 - 13
IEEE Solid-States Circuits Magazine - Fall 2023 - 14
IEEE Solid-States Circuits Magazine - Fall 2023 - 15
IEEE Solid-States Circuits Magazine - Fall 2023 - 16
IEEE Solid-States Circuits Magazine - Fall 2023 - 17
IEEE Solid-States Circuits Magazine - Fall 2023 - 18
IEEE Solid-States Circuits Magazine - Fall 2023 - 19
IEEE Solid-States Circuits Magazine - Fall 2023 - 20
IEEE Solid-States Circuits Magazine - Fall 2023 - 21
IEEE Solid-States Circuits Magazine - Fall 2023 - 22
IEEE Solid-States Circuits Magazine - Fall 2023 - 23
IEEE Solid-States Circuits Magazine - Fall 2023 - 24
IEEE Solid-States Circuits Magazine - Fall 2023 - 25
IEEE Solid-States Circuits Magazine - Fall 2023 - 26
IEEE Solid-States Circuits Magazine - Fall 2023 - 27
IEEE Solid-States Circuits Magazine - Fall 2023 - 28
IEEE Solid-States Circuits Magazine - Fall 2023 - 29
IEEE Solid-States Circuits Magazine - Fall 2023 - 30
IEEE Solid-States Circuits Magazine - Fall 2023 - 31
IEEE Solid-States Circuits Magazine - Fall 2023 - 32
IEEE Solid-States Circuits Magazine - Fall 2023 - 33
IEEE Solid-States Circuits Magazine - Fall 2023 - 34
IEEE Solid-States Circuits Magazine - Fall 2023 - 35
IEEE Solid-States Circuits Magazine - Fall 2023 - 36
IEEE Solid-States Circuits Magazine - Fall 2023 - 37
IEEE Solid-States Circuits Magazine - Fall 2023 - 38
IEEE Solid-States Circuits Magazine - Fall 2023 - 39
IEEE Solid-States Circuits Magazine - Fall 2023 - 40
IEEE Solid-States Circuits Magazine - Fall 2023 - 41
IEEE Solid-States Circuits Magazine - Fall 2023 - 42
IEEE Solid-States Circuits Magazine - Fall 2023 - 43
IEEE Solid-States Circuits Magazine - Fall 2023 - 44
IEEE Solid-States Circuits Magazine - Fall 2023 - 45
IEEE Solid-States Circuits Magazine - Fall 2023 - 46
IEEE Solid-States Circuits Magazine - Fall 2023 - 47
IEEE Solid-States Circuits Magazine - Fall 2023 - 48
IEEE Solid-States Circuits Magazine - Fall 2023 - 49
IEEE Solid-States Circuits Magazine - Fall 2023 - 50
IEEE Solid-States Circuits Magazine - Fall 2023 - 51
IEEE Solid-States Circuits Magazine - Fall 2023 - 52
IEEE Solid-States Circuits Magazine - Fall 2023 - 53
IEEE Solid-States Circuits Magazine - Fall 2023 - 54
IEEE Solid-States Circuits Magazine - Fall 2023 - 55
IEEE Solid-States Circuits Magazine - Fall 2023 - 56
IEEE Solid-States Circuits Magazine - Fall 2023 - 57
IEEE Solid-States Circuits Magazine - Fall 2023 - 58
IEEE Solid-States Circuits Magazine - Fall 2023 - 59
IEEE Solid-States Circuits Magazine - Fall 2023 - 60
IEEE Solid-States Circuits Magazine - Fall 2023 - 61
IEEE Solid-States Circuits Magazine - Fall 2023 - 62
IEEE Solid-States Circuits Magazine - Fall 2023 - 63
IEEE Solid-States Circuits Magazine - Fall 2023 - 64
IEEE Solid-States Circuits Magazine - Fall 2023 - 65
IEEE Solid-States Circuits Magazine - Fall 2023 - 66
IEEE Solid-States Circuits Magazine - Fall 2023 - 67
IEEE Solid-States Circuits Magazine - Fall 2023 - 68
IEEE Solid-States Circuits Magazine - Fall 2023 - 69
IEEE Solid-States Circuits Magazine - Fall 2023 - 70
IEEE Solid-States Circuits Magazine - Fall 2023 - 71
IEEE Solid-States Circuits Magazine - Fall 2023 - 72
IEEE Solid-States Circuits Magazine - Fall 2023 - 73
IEEE Solid-States Circuits Magazine - Fall 2023 - 74
IEEE Solid-States Circuits Magazine - Fall 2023 - 75
IEEE Solid-States Circuits Magazine - Fall 2023 - 76
IEEE Solid-States Circuits Magazine - Fall 2023 - 77
IEEE Solid-States Circuits Magazine - Fall 2023 - 78
IEEE Solid-States Circuits Magazine - Fall 2023 - 79
IEEE Solid-States Circuits Magazine - Fall 2023 - 80
IEEE Solid-States Circuits Magazine - Fall 2023 - 81
IEEE Solid-States Circuits Magazine - Fall 2023 - 82
IEEE Solid-States Circuits Magazine - Fall 2023 - 83
IEEE Solid-States Circuits Magazine - Fall 2023 - 84
IEEE Solid-States Circuits Magazine - Fall 2023 - 85
IEEE Solid-States Circuits Magazine - Fall 2023 - 86
IEEE Solid-States Circuits Magazine - Fall 2023 - 87
IEEE Solid-States Circuits Magazine - Fall 2023 - 88
IEEE Solid-States Circuits Magazine - Fall 2023 - 89
IEEE Solid-States Circuits Magazine - Fall 2023 - 90
IEEE Solid-States Circuits Magazine - Fall 2023 - 91
IEEE Solid-States Circuits Magazine - Fall 2023 - 92
IEEE Solid-States Circuits Magazine - Fall 2023 - 93
IEEE Solid-States Circuits Magazine - Fall 2023 - 94
IEEE Solid-States Circuits Magazine - Fall 2023 - 95
IEEE Solid-States Circuits Magazine - Fall 2023 - 96
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com