IEEE Solid-States Circuits Magazine - Fall 2023 - 40

pp. 805-814, Apr. 2008, doi: 10.1109/JSSC.
2008.917500.
[59] A. Ibrahim, M. Meng, and M. Kiani, " A comprehensive
comparative study on inductive
and ultrasonic wireless power transmission
to biomedical implants, " IEEE Sensors
J., vol. 18, no. 9, pp. 3813-3826, May 2018,
doi: 10.1109/JSEN.2018.2812420.
[60] A. Amar, A. Kouki, and H. Cao, " Power approaches
for implantable medical devices, "
Sensors, vol. 15, no. 11, pp. 28,889-28,914,
Nov. 2015, doi: 10.3390/s151128889.
[61] R. Vullers, R. Schaijk, H. Visser, J. Penders,
and C. Hoof, " Energy harvesting for
autonomous wireless sensor networks, "
IEEE Solid-State Circuits Mag., vol. 2, no.
2, pp. 29-38, Spring 2010, doi: 10.1109/
MSSC.2010.936667.
[62] H.-J. Kim, H. Hirayama, S. Kim, K. J. Han,
R. Zhang, and J.-W. Choi, " Review of nearfield
wireless power and communication
for biomedical applications, " IEEE Access,
vol. 5, pp. 21,264-21,285, Sep. 2017, doi:
10.1109/ACCESS.2017.2757267.
[63] B. Lee and Y. Jia, " Wirelessly-powered
cage designs for supporting long-term
experiments on small freely behaving animals
in a large experimental arena, " Electronics,
vol. 9, no. 12, Nov. 2020, Art. no.
1999, doi: 10.3390/electronics9121999.
[64] S. B. Lee, H.-M. Lee, M. Kiani, U.-M. Jow, and
M. Ghovanloo, " An inductively powered
scalable 32-channel wireless neural recording
system-on-a-chip for neuroscience applications, "
IEEE Trans. Biomed. Circuits Syst.,
vol. 4, no. 6, pp. 360-371, Dec. 2010, doi:
10.1109/TBCAS.2010.2078814.
[65] U.-M. Jow, P. McMenamin, M. Kiani, J. R.
Manns, and M. Ghovanloo, " EnerCage: A
smart experimental arena with scalable
architecture for behavioral experiments, "
IEEE Trans. Biomed. Eng., vol. 61, no. 1, pp. 139-
148, Jan. 2014, doi: 10.1109/TBME.2013.
2278180.
[66] U.-M. Jow, M. Kiani, X. Huo,
and M.
Ghovanloo, " Towards a smart experimental
arena for long-term electrophysiology
experiments, " in Proc. IEEE Biomed. Circuits
Syst. Conf. (BioCAS), San Diego, CA,
USA: IEEE, Nov. 2011, pp. 121-124, doi:
10.1109/BioCAS.2011.6107742.
[67] N. Soltani, M. S. Aliroteh, M. T. Salam, J. L.
Perez Velazquez, and R. Genov, " Low-radiation
cellular inductive powering of rodent
wireless brain interfaces: Methodology and
design guide, " IEEE Trans. Biomed. Circuits
Syst., vol. 10, no. 4, pp. 920-932, Aug. 2016,
doi: 10.1109/TBCAS.2015.2502840.
[68] B. Lee, M. Kiani, and M. Ghovanloo, " A
smart wirelessly powered homecage for
long-term high-throughput behavioral
experiments, " IEEE Sensors J., vol. 15, no.
9, pp. 4905-4916, Sep. 2015, doi: 10.1109/
JSEN.2015.2430859.
[69] S. A. Mirbozorgi, H. Bahrami, M. Sawan,
and B. Gosselin, " A smart cage with uniform
wireless power distribution in
3D for enabling long-term experiments
with freely moving animals, " IEEE Trans.
Biomed. Circuits Syst., vol. 10, no. 2, pp.
424-434, Apr. 2016, doi: 10.1109/TBCAS.
2015.2414276.
[70] S. A. Mirbozorgi, Y. Jia, D. Canales, and
M. Ghovanloo, " A wirelessly-powered
homecage with segmented copper foils
and closed-loop power control, " IEEE Trans.
Biomed. Circuits Syst., vol. 10, no. 5, pp.
979-989, Oct. 2016, doi: 10.1109/TBCAS.
2016.2577705.
[71] S. A. Mirbozorgi, Y. Jia, P. Zhang, and M.
Ghovanloo, " Toward a high-throughput
wireless smart arena for behavioral experiments
on small animals, " IEEE Trans.
Biomed. Eng., vol. 67, no. 8, pp. 2359-2369,
Aug. 2020, doi: 10.1109/TBME.2019.
2961297.
[72] Y. Jia et al., " A software-defined radio receiver
for wireless recording from freely
behaving animals, " IEEE Trans. Biomed.
Circuits Syst., vol. 13, no. 6, pp. 1645-1654,
Dec. 2019, doi: 10.1109/TBCAS.2019.
2949233.
[73] Y. Jia et al., " A trimodal wireless implantable
neural interface system-on-chip, "
IEEE Trans. Biomed. Circuits Syst., vol.
14, no. 6, pp. 1207-1217, Dec. 2020, doi:
10.1109/TBCAS.2020.3037452.
[74] D. Jiang, D. Cirmirakis, M. Schormans, T.
A. Perkins, N. Donaldson, and A. Demosthenous,
" An integrated passive phaseshift
keying modulator for biomedical
implants with power telemetry over a
single inductive link, " IEEE Trans. Biomed.
Circuits Syst., vol. 11, no. 1, pp. 64-77,
Feb. 2017, doi: 10.1109/TBCAS.2016.
2580513.
[75] S. Ha, C. Kim, J. Park, S. Joshi, and G.
Cauwenberghs, " Energy recycling telemetry
IC with simultaneous 11.5 mW power
and 6.78 Mb/s backward data delivery
over a single 13.56 MHz inductive link, "
IEEE J. Solid-State Circuits, vol. 51, no. 11,
pp. 2664-2678, Nov. 2016, doi: 10.1109/
JSSC.2016.2600864.
[76] Y.-P. Lin and K.-T. Tang, " An inductive
power and data telemetry subsystem
with fast transient low dropout regulator
for biomedical implants, " IEEE Trans.
Biomed. Circuits Syst., vol. 10, no. 2,
pp. 435-444, Apr. 2016, doi: 10.1109/TBCAS.
2015.2447526.
[77] Y. Park et al., " A wireless power and data
transfer IC for neural prostheses using
a single inductive link with frequencysplitting
characteristic, "
IEEE
Trans.
Biomed.
Circuits Syst., vol. 15, no. 6, pp.
1306-1319, Dec. 2021, doi: 10.1109/
TBCAS.2021.3135843.
[78] J. Pan, A. A. Abidi, W. Jiang, and D. Markovic,
" Simultaneous transmission of up
to 94-mW self-regulated wireless power
and up to 5-Mb/s reverse data over a
single pair of coils, " IEEE J. Solid-State Circuits,
vol. 54, no. 4, pp. 1003-1016, Apr.
2019, doi: 10.1109/JSSC.2018.2888884.
[79] S.-Y. Lee et al., " A programmable wireless
EEG monitoring SoC with open/
closed-loop optogenetic
and electrical
stimulation for epilepsy control, " in
Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), San Francisco, CA, USA: IEEE,
Feb. 2019, pp. 372-374, doi: 10.1109/
ISSCC.2019.8662385.
[80] G. Gagnon-Turcotte, I. Keramidis, C. Ethier,
Y. De Koninck, and B. Gosselin, " A wireless
electro-optic headstage with a 0.13μm
CMOS custom integrated DWT neural
signal decoder for closed-loop optogenetics, "
IEEE Trans. Biomed. Circuits Syst., vol.
13, no. 5, pp. 1036-1051, Oct. 2019, doi:
10.1109/TBCAS.2019.2930498.
[81] M. Meng and M. Kiani, " A hybrid inductive-ultrasonic
link for wireless power
transmission
to millimeter-sized
biomedical
implants, " IEEE Trans. Circuits
Syst., II, Exp. Briefs, vol. 64, no. 10, pp.
1137-1141, Oct. 2017, doi: 10.1109/TCSII.2016.2626151.
[82]
E. So, P. Yeon, E. J. Chichilnisky, and A.
Arbabian,
" An RF-ultrasound relay for
adaptive wireless powering across tissue
interfaces, " IEEE J. Solid-State Circuits, vol.
57, no. 11, pp. 3429-3441, Nov. 2022, doi:
10.1109/JSSC.2022.3171233.
About the Authors
Yaoyao Jia (yjia@austin.utexas.edu)
is an assistant professor in the Department
of Electrical and Computer
Engineering, The University of Texas
at Austin, Austin, TX 78705-2241 USA,
and a Fellow of Silicon Labs Chair in
electrical engineering. She received
her Ph.D. degree from The Georgia
Institute of Technology, Atlanta, GA,
USA, in 2019. From 2019 to 2021, she
was an assistant professor with the
Department of Electrical and Computer
Engineering, North Carolina State
University, Raleigh, NC, USA. She has
filed 11 patents and authored or coauthored
one book chapter and more
than 40 papers in refereed journals
and conferences. Her primary research
interests include analog and mixedsignal
ICs, inductive, ultrasonic, and
thermoelectric energy harvesting, the
Internet of Medical Things, implantable
biomedical devices, miniature
neural interface implants, and wearable
devices. She received the 2022
Micromachines Best Paper Award, the
2019 IEEE Biomedical Circuits and Systems
Conference (BioCAS) Best Paper
Award, IEEE Solid-State Circuits Society
Predoctoral Achievement Award,
and 2015 IEEE BioCAS Best Live Demo
Award. She is associate editor of IEEE
Transactions on Biomedical Circuits
and Systems. She is also on the Technical
Program Committee of BioCAS and
the IEEE Custom Integrated Circuits
Conference. She is a Member of IEEE.
Linran Zhao (lrzhao@utexas.edu)
received his B.S. degree from the University
of Electronic Science and Technology
of China, Chengdu, China, in
2017, and his M.S. degree from the University
of California, Irvine, CA, USA, in
2019. He is currently working toward
his Ph.D. degree in the Department of
Electrical and Computer Engineering,
The University of Texas at Austin, Austin,
TX 78705-2241 USA. His research
interests include analog/mixed-signal
ICs, sensor interfaces, and wireless
systems for low-power Internet of
Things devices, biomedical devices,
and neural interface devices. He is a
Graduate Student Member of IEEE.
40
FALL 2023
IEEE SOLID-STATE CIRCUITS MAGAZINE

IEEE Solid-States Circuits Magazine - Fall 2023

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2023

Contents
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2023 - Contents
IEEE Solid-States Circuits Magazine - Fall 2023 - 2
IEEE Solid-States Circuits Magazine - Fall 2023 - 3
IEEE Solid-States Circuits Magazine - Fall 2023 - 4
IEEE Solid-States Circuits Magazine - Fall 2023 - 5
IEEE Solid-States Circuits Magazine - Fall 2023 - 6
IEEE Solid-States Circuits Magazine - Fall 2023 - 7
IEEE Solid-States Circuits Magazine - Fall 2023 - 8
IEEE Solid-States Circuits Magazine - Fall 2023 - 9
IEEE Solid-States Circuits Magazine - Fall 2023 - 10
IEEE Solid-States Circuits Magazine - Fall 2023 - 11
IEEE Solid-States Circuits Magazine - Fall 2023 - 12
IEEE Solid-States Circuits Magazine - Fall 2023 - 13
IEEE Solid-States Circuits Magazine - Fall 2023 - 14
IEEE Solid-States Circuits Magazine - Fall 2023 - 15
IEEE Solid-States Circuits Magazine - Fall 2023 - 16
IEEE Solid-States Circuits Magazine - Fall 2023 - 17
IEEE Solid-States Circuits Magazine - Fall 2023 - 18
IEEE Solid-States Circuits Magazine - Fall 2023 - 19
IEEE Solid-States Circuits Magazine - Fall 2023 - 20
IEEE Solid-States Circuits Magazine - Fall 2023 - 21
IEEE Solid-States Circuits Magazine - Fall 2023 - 22
IEEE Solid-States Circuits Magazine - Fall 2023 - 23
IEEE Solid-States Circuits Magazine - Fall 2023 - 24
IEEE Solid-States Circuits Magazine - Fall 2023 - 25
IEEE Solid-States Circuits Magazine - Fall 2023 - 26
IEEE Solid-States Circuits Magazine - Fall 2023 - 27
IEEE Solid-States Circuits Magazine - Fall 2023 - 28
IEEE Solid-States Circuits Magazine - Fall 2023 - 29
IEEE Solid-States Circuits Magazine - Fall 2023 - 30
IEEE Solid-States Circuits Magazine - Fall 2023 - 31
IEEE Solid-States Circuits Magazine - Fall 2023 - 32
IEEE Solid-States Circuits Magazine - Fall 2023 - 33
IEEE Solid-States Circuits Magazine - Fall 2023 - 34
IEEE Solid-States Circuits Magazine - Fall 2023 - 35
IEEE Solid-States Circuits Magazine - Fall 2023 - 36
IEEE Solid-States Circuits Magazine - Fall 2023 - 37
IEEE Solid-States Circuits Magazine - Fall 2023 - 38
IEEE Solid-States Circuits Magazine - Fall 2023 - 39
IEEE Solid-States Circuits Magazine - Fall 2023 - 40
IEEE Solid-States Circuits Magazine - Fall 2023 - 41
IEEE Solid-States Circuits Magazine - Fall 2023 - 42
IEEE Solid-States Circuits Magazine - Fall 2023 - 43
IEEE Solid-States Circuits Magazine - Fall 2023 - 44
IEEE Solid-States Circuits Magazine - Fall 2023 - 45
IEEE Solid-States Circuits Magazine - Fall 2023 - 46
IEEE Solid-States Circuits Magazine - Fall 2023 - 47
IEEE Solid-States Circuits Magazine - Fall 2023 - 48
IEEE Solid-States Circuits Magazine - Fall 2023 - 49
IEEE Solid-States Circuits Magazine - Fall 2023 - 50
IEEE Solid-States Circuits Magazine - Fall 2023 - 51
IEEE Solid-States Circuits Magazine - Fall 2023 - 52
IEEE Solid-States Circuits Magazine - Fall 2023 - 53
IEEE Solid-States Circuits Magazine - Fall 2023 - 54
IEEE Solid-States Circuits Magazine - Fall 2023 - 55
IEEE Solid-States Circuits Magazine - Fall 2023 - 56
IEEE Solid-States Circuits Magazine - Fall 2023 - 57
IEEE Solid-States Circuits Magazine - Fall 2023 - 58
IEEE Solid-States Circuits Magazine - Fall 2023 - 59
IEEE Solid-States Circuits Magazine - Fall 2023 - 60
IEEE Solid-States Circuits Magazine - Fall 2023 - 61
IEEE Solid-States Circuits Magazine - Fall 2023 - 62
IEEE Solid-States Circuits Magazine - Fall 2023 - 63
IEEE Solid-States Circuits Magazine - Fall 2023 - 64
IEEE Solid-States Circuits Magazine - Fall 2023 - 65
IEEE Solid-States Circuits Magazine - Fall 2023 - 66
IEEE Solid-States Circuits Magazine - Fall 2023 - 67
IEEE Solid-States Circuits Magazine - Fall 2023 - 68
IEEE Solid-States Circuits Magazine - Fall 2023 - 69
IEEE Solid-States Circuits Magazine - Fall 2023 - 70
IEEE Solid-States Circuits Magazine - Fall 2023 - 71
IEEE Solid-States Circuits Magazine - Fall 2023 - 72
IEEE Solid-States Circuits Magazine - Fall 2023 - 73
IEEE Solid-States Circuits Magazine - Fall 2023 - 74
IEEE Solid-States Circuits Magazine - Fall 2023 - 75
IEEE Solid-States Circuits Magazine - Fall 2023 - 76
IEEE Solid-States Circuits Magazine - Fall 2023 - 77
IEEE Solid-States Circuits Magazine - Fall 2023 - 78
IEEE Solid-States Circuits Magazine - Fall 2023 - 79
IEEE Solid-States Circuits Magazine - Fall 2023 - 80
IEEE Solid-States Circuits Magazine - Fall 2023 - 81
IEEE Solid-States Circuits Magazine - Fall 2023 - 82
IEEE Solid-States Circuits Magazine - Fall 2023 - 83
IEEE Solid-States Circuits Magazine - Fall 2023 - 84
IEEE Solid-States Circuits Magazine - Fall 2023 - 85
IEEE Solid-States Circuits Magazine - Fall 2023 - 86
IEEE Solid-States Circuits Magazine - Fall 2023 - 87
IEEE Solid-States Circuits Magazine - Fall 2023 - 88
IEEE Solid-States Circuits Magazine - Fall 2023 - 89
IEEE Solid-States Circuits Magazine - Fall 2023 - 90
IEEE Solid-States Circuits Magazine - Fall 2023 - 91
IEEE Solid-States Circuits Magazine - Fall 2023 - 92
IEEE Solid-States Circuits Magazine - Fall 2023 - 93
IEEE Solid-States Circuits Magazine - Fall 2023 - 94
IEEE Solid-States Circuits Magazine - Fall 2023 - 95
IEEE Solid-States Circuits Magazine - Fall 2023 - 96
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com