IEEE Solid-States Circuits Magazine - Fall 2023 - 57
Circuits, vol. 6, no. 1, pp. 2-7, Feb. 1971,
doi: 10.1109/JSSC.1971.1050151.
[2] M. Kim and S. Cho, " A 0.0082-mm2, 192-nW
single BJT branch bandgap reference in
0.18-μm CMOS, " IEEE Solid-State Circuits
Lett., vol. 3, pp. 426-429, Sep. 2020, doi:
10.1109/LSSC.2020.3025226.
[3] J. M. Lee et al., " A 29nW bandgap reference
circuit, " in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2015, pp. 1-3, doi: 10.1109/ISSCC.
2015.7062945.
[4] Y. Ji, C. Jeon, H. Son, B. Kim, H.-J. Park,
and J.-Y. Sim, " A 9.3 nW all-in-one bandgap
voltage and current reference circuit
using leakage-based PTAT generation
and DIBL characteristic, "
in Proc.
[5] G. Chowdary, K. Kota, and S. Chatterjee,
" A 1-nW 95-ppm/°C 260-mV startup-less
bandgap-based voltage reference, " in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Seville, Spain, 2020, pp. 1-4, doi: 10.1109/
ISCAS45731.2020.9181144.
[6] I. Lee et al., " Battery voltage supervisors for
miniature IoT systems, " IEEE J. Solid-State
Circuits, vol. 51, no. 11, pp. 2743-2756, Nov.
2016, doi: 10.1109/JSSC.2016.2600565.
[7] L. Lin, S. Jain, and M. Alioto, " Sub-nW
microcontroller with dual-mode logic
and self-startup for battery-indifferent
sensor nodes, " IEEE J. Solid-State Circuits,
vol. 56, no. 5, pp. 1618-1629, May 2021,
doi: 10.1109/JSSC.2020.3038115.
[8] L. Fassio et al., " Trimming-less voltage
reference for highly uncertain harvesting
down to 0.25 V, 5.4 pW, " IEEE J. Solid-State
Circuits, vol. 56, no. 10, pp. 3134-3144, Oct.
2021, doi: 10.1109/JSSC.2021.3081440.
[9] D. Gutterman, " Simple nMOS voltage reference
circuit, " U.S. Patent 4 609 833, Sep. 1986.
[10] M. Seok et al., " A portable 2-transistor picowatt
temperature-compensated
voltage
reference operating at 0.5 V, " IEEE J. SolidState
Circuits, vol. 47, no. 10, pp. 2534-2545,
Oct. 2012, doi: 10.1109/JSSC.2012.2206683.
[11] M. Seok et al., " Reference voltage generator
having a two transistor design, " U.S.
Patent 8 564 275, Oct. 2013.
[12] Q. Dong et al., " A 114-pW PMOS-only,
trim-free voltage reference with 0.26%
within-wafer inaccuracy for nW systems, "
in Proc. IEEE Symp. VLSI Circuits (VLSICircuits),
Honolulu, HI, USA, 2016, pp. 1-2,
doi: 10.1109/VLSIC.2016.7573494.
[13] I. Lee, D. Sylvester, and D. Blaauw, " A
subthreshold voltage reference with scalable
output voltage for low-power IoT
systems, " IEEE J. Solid-State Circuits, vol.
52, no. 5, pp. 1443-1449, May 2017, doi:
10.1109/JSSC.2017.2654326.
[14] I. Lee, D. Sylvester, and D. Blaauw, " Subthreshold
voltage reference with nwell/
psub diode
low-power
leakage compensation for
high-temperature
in Proc.
systems, "
IEEE Asian Solid-State Circuits
Conf. (A-SSCC), Seoul, South Korea, 2017,
pp. 265-268, doi: 10.1109/ASSCC.2017.
8240267.
[15] C. de Oliveira et al., " Picowatt, 0.45-0.6
V self-biased subthreshold CMOS voltage
reference, " IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 64, no. 12, pp. 3036-3046, Dec.
2017, doi: 10.1109/TCSI.2017.2754644.
[16] C. de Oliveira et al., " A 0.12-0.4 V, versatile
3-transistor CMOS voltage reference
for ultra-low power systems, " IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 65, no. 11,
pp. 3790-3799, Nov. 2018, doi: 10.1109/
TCSI.2018.2859341.
[17] H. Qiao, C. Zhan, and Y. Chen, " A −40°C
to 140°C picowatt CMOS voltage reference
with 0.25-V power supply, " IEEE Trans.
Circuits Syst., II, Exp. Briefs, vol. 68, no.
9, pp. 3118-3122, Sep. 2021, doi: 10.1109/
TCSII.2021.3088157.
[18] Y. Li and I. Lee, " An 111pW voltage reference
with a diode-leakage-decoupling replica for
high-temperature miniature IoT systems, "
in Proc. IEEE Custom Integr. Circuits Conf.
(CICC), Austin, TX, USA, 2021, pp. 1-2, doi:
10.1109/CICC51472.2021.9431577.
[19] Z. Shao et al., " A 1.8-nW, −73.5-dB PSRR,
0.2-ms startup time, CMOS voltage reference
with self-biased feedback and capacitively
coupled schemes, " IEEE J. Solid-State
Circuits, vol. 56, no. 6, pp. 1795-1804, Jun.
2021, doi: 10.1109/JSSC.2020.3028506.
IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2018, pp. 309-310, doi:
10.1109/ASPDAC.2018.8297334.
[20] K. Yu, Y. Zhou, S. Li, and M. Huang, " A
23-pW NMOS-only voltage reference with
optimum body selection for process
compensation, " IEEE Trans. Circuits Syst.,
II, Exp. Briefs, vol. 69, no. 11, pp. 4213-
4217, Nov. 2022, doi: 10.1109/TCSII.2022.
3188451.
[21] Y. Li and I. Lee, " A 36pW CMOS voltage
reference with independent TC and output
level calibration for miniature lowpower
systems, " in Proc. IEEE Int. Symp.
Circuits Syst.
(ISCAS), Austin, TX, USA,
2022, pp. 1918-1922, doi: 10.1109/ISCAS48785.2022.9937312.
[22]
J. Wang, X. Sun, and L. Cheng, " A picowatt
CMOS voltage reference operating at
0.5-V power supply with process and temperature
compensation for low-power IoT
systems, " IEEE Trans. Circuits Syst., II, Exp.
Briefs, vol. 70, no. 4, pp. 1336-1340, Apr.
2023, doi: 10.1109/TCSII.2022.3231216.
[23] I. Lee and D. Blaauw, " A 31 pW-to-113 nW
hybrid BJT and CMOS voltage reference
with 3.6% ± 3v-inaccuracy from 0°C to
170°C for low-power high-temperature
IoT systems, " in Proc. IEEE Symp. VLSI
Circuits (VLSI-Circuits), Kyoto,
Japan,
2019, pp. 142-143, doi: 10.23919/VLSIC.
2019.8778113.
[24] Y. Ji et al., " A 192-pW voltage reference
generating bandgap-Vth with process and
temperature dependence compensation, "
IEEE J. Solid-State Circuits, vol. 54, no. 12,
pp. 3281-3291, Dec. 2019, doi: 10.1109/
JSSC.2019.2942356.
[25] E. A. Vittoz and O. Neyroud, " A lowvoltage
CMOS bandgap reference, " IEEE
J. Solid-State Circuits, vol. 14, no. 3, pp.
573-579, Jun. 1979, doi: 10.1109/JSSC.
1979.1051218.
[26] I. M. Filanovsky and A. Allam, " Mutual
compensation of mobility and threshold
voltage temperature effects with applications
in CMOS circuits, " IEEE Trans.
Circuits Syst. I. Fundam. Theory Appl.,
vol. 48, no. 7, pp. 876-884, Jul. 2001, doi:
10.1109/81.933328.
[27] C. Sawigun, X. Yang, A. Lodi, and C. M.
Lopez, " A sub-nW scalable nMOS voltage
reference with multi-loop regulation
achieving 0.0126%/V line sensitivity, " in
Proc. IEEE Asian Solid-State Circuits Conf.
(A-SSCC), Taipei, Taiwan, 2022, pp. 1-3,
doi: 10.1109/A-SSCC56115.2022.9980681.
[28] X. Yang et al., " An AC-coupled 1st-order
Δ-ΔΣ readout IC for area-efficient neural
signal acquisition, " IEEE J. Solid-State
Circuits, vol. 58, no. 4, pp. 949-960, Apr.
2023, doi: 10.1109/JSSC.2023.3234612.
About the Authors
Chutham Sawigun (chutham.sawigun@
imec.be) received his Ph.D. degree in
analog IC design for biomedical applications
from the Delft University of
Technology, Delft, The Netherlands, in
2014. He was an assistant professor of
analog electronics with the Mahanakorn
University of Technology, Bangkok,
Thailand. His research focused on
ultra-low-power MOS ICs for biomedical
applications. In 2019, he joined
imec, Leuven 3001, Belgium, where
he is currently a senior researcher
with the Circuits for Neural Interfaces
group. He is a Member of IEEE.
Xiaolin Yang (xiaolin.yang@imec.
be) received his Ph.D. degree in circuits
and systems from Zhejiang University,
Hangzhou, China,
in 2019.
From 2017 to 2018, he was an international
scholar with the Connected
Health Solution Team, imec, Leuven,
Belgium, where he worked on highprecision,
high-dynamic-range front
ends for biosignal recording. In May
2019, he joined imec as a researcher
and an analog circuits engineer focused
on neural
interface circuits.
He is currently a senior researcher
and a technical leader of the Neurotech
team with imec, Leuven 3001,
Belgium. His research interests include
analog and mixed-signal
design for bioelectronics and neural
interfaces. He is a Member of IEEE.
Carolina Mora Lopez (carolina.
moralopez@imec.be) received her
Ph.D. degree in electrical engineering
from Katholieke Universiteit Leuven,
Leuven, Belgium, in 2012, in collaboration
with imec, Leuven. From 2012
to 2018, she worked as a researcher
and an analog designer with imec, focusing
on interfaces for neural-sensing
applications. She is currently the
scientific director and the team leader
of the Circuits for Neural Interfaces
team with imec, Leuven 3001, Belgium.
Her research interests include
analog and mixed-signal circuit design
for sensors, bioelectronics, and
neural interfaces. She is an IEEE SSCS
Distinguished Lecturer and serves on
the Technical Program Committee of
the VLSI Circuits Symposium, the IEEE
International Solid-State Circuits Conference,
and the European Conference
on Solid-State Circuits. She is a Senior
Member of IEEE.
circuit
IEEE SOLID-STATE CIRCUITS MAGAZINE
FALL 2023
57
http://dx.doi.org/10.1109/JSSC.1971.1050151
http://dx.doi.org/10.1109/TCSII.2021.3088157
http://dx.doi.org/10.1109/TCSII.2021.3088157
http://dx.doi.org/10.1109/LSSC.2020.3025226
http://dx.doi.org/10.1109/JSSC.2020.3028506
http://dx.doi.org/10.1109/TCSII.2022.3188451
http://dx.doi.org/10.1109/TCSII.2022.3188451
http://dx.doi.org/10.1109/JSSC.2016.2600565
http://dx.doi.org/10.1109/TCSII.2022.3231216
http://dx.doi.org/10.1109/JSSC.2021.3081440
http://dx.doi.org/10.1109/JSSC.2012.2206683
http://dx.doi.org/10.1109/JSSC.2019.2942356
http://dx.doi.org/10.1109/JSSC.2019.2942356
http://dx.doi.org/10.1109/JSSC.1979.1051218
http://dx.doi.org/10.1109/JSSC.1979.1051218
http://dx.doi.org/10.1109/JSSC.2017.2654326
http://dx.doi.org/10.1109/81.933328
http://dx.doi.org/10.1109/JSSC.2023.3234612
http://dx.doi.org/10.1109/TCSI.2017.2754644
http://dx.doi.org/10.1109/TCSI.2018.2859341
http://dx.doi.org/10.1109/TCSI.2018.2859341
IEEE Solid-States Circuits Magazine - Fall 2023
Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Fall 2023
Contents
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover1
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover2
IEEE Solid-States Circuits Magazine - Fall 2023 - Contents
IEEE Solid-States Circuits Magazine - Fall 2023 - 2
IEEE Solid-States Circuits Magazine - Fall 2023 - 3
IEEE Solid-States Circuits Magazine - Fall 2023 - 4
IEEE Solid-States Circuits Magazine - Fall 2023 - 5
IEEE Solid-States Circuits Magazine - Fall 2023 - 6
IEEE Solid-States Circuits Magazine - Fall 2023 - 7
IEEE Solid-States Circuits Magazine - Fall 2023 - 8
IEEE Solid-States Circuits Magazine - Fall 2023 - 9
IEEE Solid-States Circuits Magazine - Fall 2023 - 10
IEEE Solid-States Circuits Magazine - Fall 2023 - 11
IEEE Solid-States Circuits Magazine - Fall 2023 - 12
IEEE Solid-States Circuits Magazine - Fall 2023 - 13
IEEE Solid-States Circuits Magazine - Fall 2023 - 14
IEEE Solid-States Circuits Magazine - Fall 2023 - 15
IEEE Solid-States Circuits Magazine - Fall 2023 - 16
IEEE Solid-States Circuits Magazine - Fall 2023 - 17
IEEE Solid-States Circuits Magazine - Fall 2023 - 18
IEEE Solid-States Circuits Magazine - Fall 2023 - 19
IEEE Solid-States Circuits Magazine - Fall 2023 - 20
IEEE Solid-States Circuits Magazine - Fall 2023 - 21
IEEE Solid-States Circuits Magazine - Fall 2023 - 22
IEEE Solid-States Circuits Magazine - Fall 2023 - 23
IEEE Solid-States Circuits Magazine - Fall 2023 - 24
IEEE Solid-States Circuits Magazine - Fall 2023 - 25
IEEE Solid-States Circuits Magazine - Fall 2023 - 26
IEEE Solid-States Circuits Magazine - Fall 2023 - 27
IEEE Solid-States Circuits Magazine - Fall 2023 - 28
IEEE Solid-States Circuits Magazine - Fall 2023 - 29
IEEE Solid-States Circuits Magazine - Fall 2023 - 30
IEEE Solid-States Circuits Magazine - Fall 2023 - 31
IEEE Solid-States Circuits Magazine - Fall 2023 - 32
IEEE Solid-States Circuits Magazine - Fall 2023 - 33
IEEE Solid-States Circuits Magazine - Fall 2023 - 34
IEEE Solid-States Circuits Magazine - Fall 2023 - 35
IEEE Solid-States Circuits Magazine - Fall 2023 - 36
IEEE Solid-States Circuits Magazine - Fall 2023 - 37
IEEE Solid-States Circuits Magazine - Fall 2023 - 38
IEEE Solid-States Circuits Magazine - Fall 2023 - 39
IEEE Solid-States Circuits Magazine - Fall 2023 - 40
IEEE Solid-States Circuits Magazine - Fall 2023 - 41
IEEE Solid-States Circuits Magazine - Fall 2023 - 42
IEEE Solid-States Circuits Magazine - Fall 2023 - 43
IEEE Solid-States Circuits Magazine - Fall 2023 - 44
IEEE Solid-States Circuits Magazine - Fall 2023 - 45
IEEE Solid-States Circuits Magazine - Fall 2023 - 46
IEEE Solid-States Circuits Magazine - Fall 2023 - 47
IEEE Solid-States Circuits Magazine - Fall 2023 - 48
IEEE Solid-States Circuits Magazine - Fall 2023 - 49
IEEE Solid-States Circuits Magazine - Fall 2023 - 50
IEEE Solid-States Circuits Magazine - Fall 2023 - 51
IEEE Solid-States Circuits Magazine - Fall 2023 - 52
IEEE Solid-States Circuits Magazine - Fall 2023 - 53
IEEE Solid-States Circuits Magazine - Fall 2023 - 54
IEEE Solid-States Circuits Magazine - Fall 2023 - 55
IEEE Solid-States Circuits Magazine - Fall 2023 - 56
IEEE Solid-States Circuits Magazine - Fall 2023 - 57
IEEE Solid-States Circuits Magazine - Fall 2023 - 58
IEEE Solid-States Circuits Magazine - Fall 2023 - 59
IEEE Solid-States Circuits Magazine - Fall 2023 - 60
IEEE Solid-States Circuits Magazine - Fall 2023 - 61
IEEE Solid-States Circuits Magazine - Fall 2023 - 62
IEEE Solid-States Circuits Magazine - Fall 2023 - 63
IEEE Solid-States Circuits Magazine - Fall 2023 - 64
IEEE Solid-States Circuits Magazine - Fall 2023 - 65
IEEE Solid-States Circuits Magazine - Fall 2023 - 66
IEEE Solid-States Circuits Magazine - Fall 2023 - 67
IEEE Solid-States Circuits Magazine - Fall 2023 - 68
IEEE Solid-States Circuits Magazine - Fall 2023 - 69
IEEE Solid-States Circuits Magazine - Fall 2023 - 70
IEEE Solid-States Circuits Magazine - Fall 2023 - 71
IEEE Solid-States Circuits Magazine - Fall 2023 - 72
IEEE Solid-States Circuits Magazine - Fall 2023 - 73
IEEE Solid-States Circuits Magazine - Fall 2023 - 74
IEEE Solid-States Circuits Magazine - Fall 2023 - 75
IEEE Solid-States Circuits Magazine - Fall 2023 - 76
IEEE Solid-States Circuits Magazine - Fall 2023 - 77
IEEE Solid-States Circuits Magazine - Fall 2023 - 78
IEEE Solid-States Circuits Magazine - Fall 2023 - 79
IEEE Solid-States Circuits Magazine - Fall 2023 - 80
IEEE Solid-States Circuits Magazine - Fall 2023 - 81
IEEE Solid-States Circuits Magazine - Fall 2023 - 82
IEEE Solid-States Circuits Magazine - Fall 2023 - 83
IEEE Solid-States Circuits Magazine - Fall 2023 - 84
IEEE Solid-States Circuits Magazine - Fall 2023 - 85
IEEE Solid-States Circuits Magazine - Fall 2023 - 86
IEEE Solid-States Circuits Magazine - Fall 2023 - 87
IEEE Solid-States Circuits Magazine - Fall 2023 - 88
IEEE Solid-States Circuits Magazine - Fall 2023 - 89
IEEE Solid-States Circuits Magazine - Fall 2023 - 90
IEEE Solid-States Circuits Magazine - Fall 2023 - 91
IEEE Solid-States Circuits Magazine - Fall 2023 - 92
IEEE Solid-States Circuits Magazine - Fall 2023 - 93
IEEE Solid-States Circuits Magazine - Fall 2023 - 94
IEEE Solid-States Circuits Magazine - Fall 2023 - 95
IEEE Solid-States Circuits Magazine - Fall 2023 - 96
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover3
IEEE Solid-States Circuits Magazine - Fall 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com