IEEE Solid-States Circuits Magazine - Spring 2020 - 11
HCTLE
VDD
An
Md
R1
M1
A0
Vout
f1
Vin
f
(a)
M2
(b)
VDD
M1
Cb
M2
VDD
X
Ca
M1
Y
Vout
Vin
M3
M4
CGD1
X
(c)
Ca
Y
(d)
FIGURE 14: CTLE application of active inductors: (a) the typical CTLE frequency response, (b)
the CTLE implementation using active inductors, (c) cancellation of gate-drain capacitance in
a differential topology, and (d) an illustration of the capacitors' role.
example [4] where a differential
pair delivers a large voltage swing
to a transmission line and the network comprising M 1-M 6 serves as a
tunable inductive load. We recognize that M 1 and M 2 play the same
role as M 1 in Figure 11 and M 5 and
M 6 the same role as R 1. Moreover,
source followers M 3 and M 4 act
as level shifters, allowing the gate
voltages of M 1 and M 2 to be lower
than their respective drain voltages
by VGS3, 4. This structure therefore
lends itself to low supply voltages.
The on-resistance of M 5 and M 6 can
be adjusted by means of their gate
voltage, thus providing a variable
boost factor [4].
Another interesting application
of active inductors is in continuoustime linear equalizers (CTLEs) used
in wireline receivers. A CTLE must
provide a high-pass response to partially compensate for the high-frequency loss of the channel through
which the data travels [Figure 14(a)].
We say the CTLE provides a "boost
factor," A n /A 0, and we make it programmable so as to accommodate
different channel losses.
We can envision the CTLE as a simple common-source stage and implement the responses in Figure 14(a) by
means of a variable load impedance;
specifically, since the slope of the
load must be programmable, we surmise that a variable inductance can
serve this purpose. The tunability
afforded by (12) thus proves useful
here, leading to the CTLE topology
shown in Figure 14(b) [5]. The inductance is tuned by varying the PMOS
load's transconductance. This device is decomposed into a number of
units, each of which can participate
in the active inductor environment.
But, to ensure a constant low-frequency gain, A 0, when some of these
units turn off, additional diode-connected transistors are turned on [5].
This approach must still deal with
the voltage headroom consumed by
the PMOS transistors.
Recall from Figure 10(c) that the
gate-drain capacitance of the core
transistor in an active inductor degrades the performance. This issue
can be resolved in a differential topology by adding compensating capacitors [Figure 14(c)] [5]. Here, C a and C b
are chosen equal to the PMOS gatedrain capacitances. As illustrated in
Figure 14(d), the gate voltage of M 1 is
now unaffected by C GD1 because this
capacitance and C a inject equal and
opposite amounts of charge.
Active inductors can also serve
in analog filter design. In fact, some
classic filters were based on "simulated inductors" [6], circuits that
used op-amps and capacitors to emulate an inductive behavior.
References
[1] B. Christensen, "Monolithic semiconductor circuit with energy storage junction
and feedback to active transistor to produce two terminal inductance," U.S. Patent 3 160 835, Dec. 8, 1964.
[2] E. Sackinger and W. Fischer, "A 3 GHz, 32
dB CMOS limiting amplifier for SONET OC48 receivers," in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2000, pp. 158-159. doi: 10.1109/
ISSCC.2000.839730.
[3] J. Im et al., "A 112-Gb/s PAM4 long-reach
wireline transceiver using a 36-way timeinterleaved SAR ADC and inverter-based
RX analog front end in 7-nm FinFET," in
Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2020, pp.
116-117.
[4] Y.-S. Lee, S. Sheikhaei, and S. Mirabbasi,
"A 10 Gb/s active-inductor structure with
peaking control in 90-nm CMOS," in Proc.
Asian Solid-State Circuits Conf., Nov. 2008,
pp. 229-232. doi: 10.1109/ASSCC.2008.
4708770.
[5] P. A. Francese et al., "Continuous-time
li--near equalization with programmable
active-peaking transistor arrays in a
14-nm FinFET 2-mW/Gb/s 16-Gb/s 2-tap
speculative DFE receiver," in Proc. IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig.
Tech. Papers, Feb. 2015, pp. 186-187. doi:
10.1109/ISSCC.2015.7062988.
[6] A. Sedra and K. Smith, Microelectronic Circuits, 5th ed. London, Oxford Univ. Press,
2004.
IEEE SOLID-STATE CIRCUITS MAGAZINE
S P R I N G 2 0 2 0
11
IEEE Solid-States Circuits Magazine - Spring 2020
Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Spring 2020
Contents
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover1
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover2
IEEE Solid-States Circuits Magazine - Spring 2020 - Contents
IEEE Solid-States Circuits Magazine - Spring 2020 - 2
IEEE Solid-States Circuits Magazine - Spring 2020 - 3
IEEE Solid-States Circuits Magazine - Spring 2020 - 4
IEEE Solid-States Circuits Magazine - Spring 2020 - 5
IEEE Solid-States Circuits Magazine - Spring 2020 - 6
IEEE Solid-States Circuits Magazine - Spring 2020 - 7
IEEE Solid-States Circuits Magazine - Spring 2020 - 8
IEEE Solid-States Circuits Magazine - Spring 2020 - 9
IEEE Solid-States Circuits Magazine - Spring 2020 - 10
IEEE Solid-States Circuits Magazine - Spring 2020 - 11
IEEE Solid-States Circuits Magazine - Spring 2020 - 12
IEEE Solid-States Circuits Magazine - Spring 2020 - 13
IEEE Solid-States Circuits Magazine - Spring 2020 - 14
IEEE Solid-States Circuits Magazine - Spring 2020 - 15
IEEE Solid-States Circuits Magazine - Spring 2020 - 16
IEEE Solid-States Circuits Magazine - Spring 2020 - 17
IEEE Solid-States Circuits Magazine - Spring 2020 - 18
IEEE Solid-States Circuits Magazine - Spring 2020 - 19
IEEE Solid-States Circuits Magazine - Spring 2020 - 20
IEEE Solid-States Circuits Magazine - Spring 2020 - 21
IEEE Solid-States Circuits Magazine - Spring 2020 - 22
IEEE Solid-States Circuits Magazine - Spring 2020 - 23
IEEE Solid-States Circuits Magazine - Spring 2020 - 24
IEEE Solid-States Circuits Magazine - Spring 2020 - 25
IEEE Solid-States Circuits Magazine - Spring 2020 - 26
IEEE Solid-States Circuits Magazine - Spring 2020 - 27
IEEE Solid-States Circuits Magazine - Spring 2020 - 28
IEEE Solid-States Circuits Magazine - Spring 2020 - 29
IEEE Solid-States Circuits Magazine - Spring 2020 - 30
IEEE Solid-States Circuits Magazine - Spring 2020 - 31
IEEE Solid-States Circuits Magazine - Spring 2020 - 32
IEEE Solid-States Circuits Magazine - Spring 2020 - 33
IEEE Solid-States Circuits Magazine - Spring 2020 - 34
IEEE Solid-States Circuits Magazine - Spring 2020 - 35
IEEE Solid-States Circuits Magazine - Spring 2020 - 36
IEEE Solid-States Circuits Magazine - Spring 2020 - 37
IEEE Solid-States Circuits Magazine - Spring 2020 - 38
IEEE Solid-States Circuits Magazine - Spring 2020 - 39
IEEE Solid-States Circuits Magazine - Spring 2020 - 40
IEEE Solid-States Circuits Magazine - Spring 2020 - 41
IEEE Solid-States Circuits Magazine - Spring 2020 - 42
IEEE Solid-States Circuits Magazine - Spring 2020 - 43
IEEE Solid-States Circuits Magazine - Spring 2020 - 44
IEEE Solid-States Circuits Magazine - Spring 2020 - 45
IEEE Solid-States Circuits Magazine - Spring 2020 - 46
IEEE Solid-States Circuits Magazine - Spring 2020 - 47
IEEE Solid-States Circuits Magazine - Spring 2020 - 48
IEEE Solid-States Circuits Magazine - Spring 2020 - 49
IEEE Solid-States Circuits Magazine - Spring 2020 - 50
IEEE Solid-States Circuits Magazine - Spring 2020 - 51
IEEE Solid-States Circuits Magazine - Spring 2020 - 52
IEEE Solid-States Circuits Magazine - Spring 2020 - 53
IEEE Solid-States Circuits Magazine - Spring 2020 - 54
IEEE Solid-States Circuits Magazine - Spring 2020 - 55
IEEE Solid-States Circuits Magazine - Spring 2020 - 56
IEEE Solid-States Circuits Magazine - Spring 2020 - 57
IEEE Solid-States Circuits Magazine - Spring 2020 - 58
IEEE Solid-States Circuits Magazine - Spring 2020 - 59
IEEE Solid-States Circuits Magazine - Spring 2020 - 60
IEEE Solid-States Circuits Magazine - Spring 2020 - 61
IEEE Solid-States Circuits Magazine - Spring 2020 - 62
IEEE Solid-States Circuits Magazine - Spring 2020 - 63
IEEE Solid-States Circuits Magazine - Spring 2020 - 64
IEEE Solid-States Circuits Magazine - Spring 2020 - 65
IEEE Solid-States Circuits Magazine - Spring 2020 - 66
IEEE Solid-States Circuits Magazine - Spring 2020 - 67
IEEE Solid-States Circuits Magazine - Spring 2020 - 68
IEEE Solid-States Circuits Magazine - Spring 2020 - 69
IEEE Solid-States Circuits Magazine - Spring 2020 - 70
IEEE Solid-States Circuits Magazine - Spring 2020 - 71
IEEE Solid-States Circuits Magazine - Spring 2020 - 72
IEEE Solid-States Circuits Magazine - Spring 2020 - 73
IEEE Solid-States Circuits Magazine - Spring 2020 - 74
IEEE Solid-States Circuits Magazine - Spring 2020 - 75
IEEE Solid-States Circuits Magazine - Spring 2020 - 76
IEEE Solid-States Circuits Magazine - Spring 2020 - 77
IEEE Solid-States Circuits Magazine - Spring 2020 - 78
IEEE Solid-States Circuits Magazine - Spring 2020 - 79
IEEE Solid-States Circuits Magazine - Spring 2020 - 80
IEEE Solid-States Circuits Magazine - Spring 2020 - 81
IEEE Solid-States Circuits Magazine - Spring 2020 - 82
IEEE Solid-States Circuits Magazine - Spring 2020 - 83
IEEE Solid-States Circuits Magazine - Spring 2020 - 84
IEEE Solid-States Circuits Magazine - Spring 2020 - 85
IEEE Solid-States Circuits Magazine - Spring 2020 - 86
IEEE Solid-States Circuits Magazine - Spring 2020 - 87
IEEE Solid-States Circuits Magazine - Spring 2020 - 88
IEEE Solid-States Circuits Magazine - Spring 2020 - 89
IEEE Solid-States Circuits Magazine - Spring 2020 - 90
IEEE Solid-States Circuits Magazine - Spring 2020 - 91
IEEE Solid-States Circuits Magazine - Spring 2020 - 92
IEEE Solid-States Circuits Magazine - Spring 2020 - 93
IEEE Solid-States Circuits Magazine - Spring 2020 - 94
IEEE Solid-States Circuits Magazine - Spring 2020 - 95
IEEE Solid-States Circuits Magazine - Spring 2020 - 96
IEEE Solid-States Circuits Magazine - Spring 2020 - 97
IEEE Solid-States Circuits Magazine - Spring 2020 - 98
IEEE Solid-States Circuits Magazine - Spring 2020 - 99
IEEE Solid-States Circuits Magazine - Spring 2020 - 100
IEEE Solid-States Circuits Magazine - Spring 2020 - 101
IEEE Solid-States Circuits Magazine - Spring 2020 - 102
IEEE Solid-States Circuits Magazine - Spring 2020 - 103
IEEE Solid-States Circuits Magazine - Spring 2020 - 104
IEEE Solid-States Circuits Magazine - Spring 2020 - 105
IEEE Solid-States Circuits Magazine - Spring 2020 - 106
IEEE Solid-States Circuits Magazine - Spring 2020 - 107
IEEE Solid-States Circuits Magazine - Spring 2020 - 108
IEEE Solid-States Circuits Magazine - Spring 2020 - 109
IEEE Solid-States Circuits Magazine - Spring 2020 - 110
IEEE Solid-States Circuits Magazine - Spring 2020 - 111
IEEE Solid-States Circuits Magazine - Spring 2020 - 112
IEEE Solid-States Circuits Magazine - Spring 2020 - 113
IEEE Solid-States Circuits Magazine - Spring 2020 - 114
IEEE Solid-States Circuits Magazine - Spring 2020 - 115
IEEE Solid-States Circuits Magazine - Spring 2020 - 116
IEEE Solid-States Circuits Magazine - Spring 2020 - 117
IEEE Solid-States Circuits Magazine - Spring 2020 - 118
IEEE Solid-States Circuits Magazine - Spring 2020 - 119
IEEE Solid-States Circuits Magazine - Spring 2020 - 120
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover3
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com