IEEE Solid-States Circuits Magazine - Spring 2020 - 29
FOM new or FOM Bnew . For example, OIP3
shows low correlation with gain, frequency, BW, and Tcas . OIP3 is most
strongly correlated with Pdc, but even
this is still rather low at 20%. Therefore, an FOM to capture LNA linearity
via OIP3 could simply be created by
multiplying FOM Bnew by OIP3, as in
, IP3
FOM Bnew
L [nm] # B 0r .32 ^f0 [GHz] + 17.4h2.3
=
Tcas [K] # Pdc [mW] 0.31
(5)
# OIP3 [mW] .
, IP3
as a function
Figure 7 plots FOM Bnew
of frequency. As some publications
do not specify IP3, fewer data points
are available for generating Figure 7
compared to the previous figures.
Conclusions
In this article, we introduced a new
survey containing data freely available
for use relating to more than 500 LNAs.
We discussed various performance
metrics and suggested a method
of determining FOMs that is arguably more appropriate than existing
methods for comparing LNA design
methods. Of course, there may be
many other ways of using such a survey as well as better ways of identifying trends and FOMs. We eagerly look
forward to seeing whether our initial
effort helps others in their work. As
noted earlier, we would also be more
than happy to correct any errors or
omissions that have inadvertently crept
into the survey.
References
[1] B. Murmann, "ADC performance survey
1997-2020." Accessed on: Apr. 2, 2020.
[Online]. Available: http://web.stanford
.edu/~murmann/adcsurvey.html
[2] K. Makinwa, "Smart temperature sensor
survey." Accessed on: Apr. 2, 2020. [Online]. Available: http://ei.ewi.tudelft.nl/
docs/TSensor_survey.xls
[3] H. Wang et al., "Power amplifiers performance survey 2000-present," Georgia
Tech Electronics and Micro-System Lab,
Atlanta, July 1, 2019. [Online]. Available:
https://gems.e ce .g ate c h .e du / PA _ s u r
vey.html
[4] P.-I. Mak, D. Leenaerts, H. C. Luong, and J.
R. Long, "Low-noise amplifiers," IEEE RFIC
Virtual J., no. 4, Apr. 2014.
[5] L. Belostotski and S. Jagtap, "Low-noiseamplifier (LNA) performance survey,"
Univ. of Calgary, Canada, Jan. 2020. [Online]. Available: https://www.ucalgary
.ca/lbelosto
[6] B. Murmann, "The race for the extra decibel: A brief review of current ADC perfor-
mance trajectories," IEEE Solid State Circuits Mag., vol. 7, no. 3, pp. 58-66, Summer
2015. doi: 10.1109/MSSC.2015.2442393.
[7] B. R. Gregoire, T. Musah, N. Maghari, S.
Weaver, and U. Moon, "A 30% beyond
VDD signal swing 9-ENOB pipelined ADC
using a 1.2V 30dB loop-gain opamp," in
Proc. IEEE Asian Solid-State Circuits Conf.,
Nov. 2011, pp. 345-348. doi: 10.1109/ASSCC
.2011.6123585.
[8] Y. Xu, G. Wu, L. Belostotski, and J. W. Haslett,
"5-bit 5-GS/s noninterleaved time-based
ADC in 65-nm CMOS for radio-astronomy applications," IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 24, no. 12,
pp. 3513-3525, Dec. 2016. doi: 10.1109/
TVLSI.2016.2558105.
[9] C. Chan, Y. Zhu, S. Sin, S. Ben U, and R.
P. Martins, "A 6 b 5 GS/s 4 interleaved
3 b/Cycle SAR ADC," IEEE J. Solid-State
C
- ircuits, vol. 51, no. 2, pp. 365-377, Feb.
2016. doi: 10.1109/JSSC.2015.2493167.
[10] J. Yuan, S. W. Fung, K. Y. Chan, and R. Xu,
"An interpolation-based calibration architecture for pipeline ADC with nonlinear
error," IEEE Trans. Instrum. Meas., vol. 61,
no. 1, pp. 17-25, Jan. 2012. doi: 10.1109/
TIM.2011.2161026.
[11] L. Belostotski and J. W. Haslett, "Sub-0.2
dB noise figure wide-band room-temperature CMOS LNA with non-50 Ω signalsource impedance," IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2492-2502, Nov.
2007. doi: 10.1109/JSSC.2007.907172.
[12] L. Belostotski et al., "The first CMOS LNA
on a radio telescope," in Proc. Int. Symp.
Antenna Technology and Applied Electromagnetics, Victoria, Canada, July 13‑16,
2014, pp. 1-3. doi: 10.1109/ANTEM.2014.
6887719.
[13] A. J. Beaulieu, L. Belostotski, T. Burgess,
B. Veidt, and J. W. Haslett, "Noise performance of a phased-array feed with CMOS
low-noise amplifiers," IEEE Antennas
-Wireless Propag. Lett., vol. 15, pp. 1719-
1722, Feb. 2016. doi: 10.1109/LAWP.2016.
2528818.
[14] M. Rahman and R. Harjani, "A sub-1V,
2.8dB NF, 475 μW coupled LNA for internet of things employing dual-path noise
and nonlinearity cancellation," in Proc.
IEEE Radio Frequency Integrated Circuits
Symp. (RFIC), June 2017, pp. 236-239. doi:
10.1109/RFIC.2017.7969061.
[15] S. Krishnamurthy, F. Maksimovic, and
A. M. Niknejad, "580μW 2.2-2.4GHz receiver with +3.3dBm out-of-band IIP3 for
IoT applications," in Proc. IEEE European
Solid State Circuits Conf. (ESSCIRC), Sept.
2018, pp. 106-109. doi: 10.1109/ESSCIRC
.2018.849427.
[16] D. Ye, R. van der Zee, and B. Nauta, "A 915
MHz 175 μW receiver using transmittedreference and shifted limiters for 50 dB
in-band interference tolerance," IEEE J.
Solid-State Circuits, vol. 51, no. 12, pp.
3114-3124, Dec. 2016. doi: 10.1109/JSSC.
2016.2602943.
[17] J. C. Bardin and S. Weinreb, "Experimental cryogenic modeling and noise of
SiGe HBTs," in Proc. IEEE Int. Microwave
Symp. Dig., Atlanta, June 15‑20, 2008, pp.
459 - 462. doi: 10.1109/MWSYM.2008.
4633202.
[18] H. A. Haus and R. B. Adler, "Optimum noise
performance of linear amplifiers," Proc.
IRE, vol. 46, no. 8, pp. 1517-1533, 1958.
doi: 10.1109/JRPROC.1958.286973.
[19] L. Belostotski and J. W. Haslett, "Noise figure optimization of inductively degenerated CMOS LNAs with integrated gate inductors," IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 53, no. 7, pp. 1409-1422, July
2006. doi: 10.1109/TCSI.2006.875188.
[20] D. K. Shaeffer and T. H. Lee, "A 1.5-V, 1.5-GHz
CMOS low noise amplifier," IEEE J. SolidState Circuits, vol. 32, no. 5, pp. 745-759,
May 1997. doi: 10.1109/4.568846.
[21] T. O. Dickson et al., "The invariance of characteristic current densities in nanoscale
MOSFETs and its impact on algorithmic
design methodologies and design porting
of Si(Ge) (Bi)CMOS high-speed building
blocks," IEEE J. Solid-State Circuits, vol.
41, no. 8, pp. 1830-1845, Aug. 2006. doi:
10.1109/JSSC.2006.875301.
About the Authors
Leonid Belostotski (lbelosto@ucalgary
.ca) received his B.S. and M.S. degrees
in electrical engineering from the
University of Alberta, Canada, in 1997
and 2000, respectively, and his Ph.D.
degree from the University of Calgary,
Canada, in 2007. He is currently a professor with the University of Calgary
and the Canada research chair in highsensitivity radiometers and receivers.
He was a radio-frequency (RF) engineer with Murandi Communications
Ltd., Calgary, from 2001 to 2004. His
current research interests include
radio-frequency and mixed-signal
ICs, high-sensitivity receiver systems,
antenna arrays, and terahertz systems.
He was a winner of the 2008 IEEE Microwave Theory and Techniques Society
Contest on Creativity and -Originality
in Microwave Measurements and re--
ceived the 2007 Outstanding Student
Designer Award from Analog Devices,
Inc. He is the IEEE Southern Alberta
Solid-State Circuits Society and IEEE
Circuits and Systems Society Chapter
chair. He is an associate editor of IEEE
Transactions on Instrumentation and
Measurement. He is a Senior Member
of the IEEE.
Sameep Jagtap (sameep.jagtap@
ucalgary.ca) is currently a fourthyear electrical engineering student
in the Department of Electrical and
Computer Engineering, Schulich
School of Engineering, University of
Calgary, Canada. He was a recipient
of the Natural Sciences and Engineering Research Council of Canada
Undergraduate Student Research
Award in 2019, which allowed him
to intern as a research assistant and
work on identifying and compiling entries for the low-noise amplifier survey.
IEEE SOLID-STATE CIRCUITS MAGAZINE
S P R I N G 2 0 2 0
29
http://web.stanford.edu/~murmann/adcsurvey.html
http://web.stanford.edu/~murmann/adcsurvey.html
http://web.stanford.edu/~murmann/adcsurvey.html
http://web.stanford.edu/~murmann/adcsurvey.html
https://gems.ece.gatech.edu/PA_survey.html
https://gems.ece.gatech.edu/PA_survey.html
https://www.ucalgary.ca/lbelosto
https://www.ucalgary.ca/lbelosto
IEEE Solid-States Circuits Magazine - Spring 2020
Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Spring 2020
Contents
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover1
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover2
IEEE Solid-States Circuits Magazine - Spring 2020 - Contents
IEEE Solid-States Circuits Magazine - Spring 2020 - 2
IEEE Solid-States Circuits Magazine - Spring 2020 - 3
IEEE Solid-States Circuits Magazine - Spring 2020 - 4
IEEE Solid-States Circuits Magazine - Spring 2020 - 5
IEEE Solid-States Circuits Magazine - Spring 2020 - 6
IEEE Solid-States Circuits Magazine - Spring 2020 - 7
IEEE Solid-States Circuits Magazine - Spring 2020 - 8
IEEE Solid-States Circuits Magazine - Spring 2020 - 9
IEEE Solid-States Circuits Magazine - Spring 2020 - 10
IEEE Solid-States Circuits Magazine - Spring 2020 - 11
IEEE Solid-States Circuits Magazine - Spring 2020 - 12
IEEE Solid-States Circuits Magazine - Spring 2020 - 13
IEEE Solid-States Circuits Magazine - Spring 2020 - 14
IEEE Solid-States Circuits Magazine - Spring 2020 - 15
IEEE Solid-States Circuits Magazine - Spring 2020 - 16
IEEE Solid-States Circuits Magazine - Spring 2020 - 17
IEEE Solid-States Circuits Magazine - Spring 2020 - 18
IEEE Solid-States Circuits Magazine - Spring 2020 - 19
IEEE Solid-States Circuits Magazine - Spring 2020 - 20
IEEE Solid-States Circuits Magazine - Spring 2020 - 21
IEEE Solid-States Circuits Magazine - Spring 2020 - 22
IEEE Solid-States Circuits Magazine - Spring 2020 - 23
IEEE Solid-States Circuits Magazine - Spring 2020 - 24
IEEE Solid-States Circuits Magazine - Spring 2020 - 25
IEEE Solid-States Circuits Magazine - Spring 2020 - 26
IEEE Solid-States Circuits Magazine - Spring 2020 - 27
IEEE Solid-States Circuits Magazine - Spring 2020 - 28
IEEE Solid-States Circuits Magazine - Spring 2020 - 29
IEEE Solid-States Circuits Magazine - Spring 2020 - 30
IEEE Solid-States Circuits Magazine - Spring 2020 - 31
IEEE Solid-States Circuits Magazine - Spring 2020 - 32
IEEE Solid-States Circuits Magazine - Spring 2020 - 33
IEEE Solid-States Circuits Magazine - Spring 2020 - 34
IEEE Solid-States Circuits Magazine - Spring 2020 - 35
IEEE Solid-States Circuits Magazine - Spring 2020 - 36
IEEE Solid-States Circuits Magazine - Spring 2020 - 37
IEEE Solid-States Circuits Magazine - Spring 2020 - 38
IEEE Solid-States Circuits Magazine - Spring 2020 - 39
IEEE Solid-States Circuits Magazine - Spring 2020 - 40
IEEE Solid-States Circuits Magazine - Spring 2020 - 41
IEEE Solid-States Circuits Magazine - Spring 2020 - 42
IEEE Solid-States Circuits Magazine - Spring 2020 - 43
IEEE Solid-States Circuits Magazine - Spring 2020 - 44
IEEE Solid-States Circuits Magazine - Spring 2020 - 45
IEEE Solid-States Circuits Magazine - Spring 2020 - 46
IEEE Solid-States Circuits Magazine - Spring 2020 - 47
IEEE Solid-States Circuits Magazine - Spring 2020 - 48
IEEE Solid-States Circuits Magazine - Spring 2020 - 49
IEEE Solid-States Circuits Magazine - Spring 2020 - 50
IEEE Solid-States Circuits Magazine - Spring 2020 - 51
IEEE Solid-States Circuits Magazine - Spring 2020 - 52
IEEE Solid-States Circuits Magazine - Spring 2020 - 53
IEEE Solid-States Circuits Magazine - Spring 2020 - 54
IEEE Solid-States Circuits Magazine - Spring 2020 - 55
IEEE Solid-States Circuits Magazine - Spring 2020 - 56
IEEE Solid-States Circuits Magazine - Spring 2020 - 57
IEEE Solid-States Circuits Magazine - Spring 2020 - 58
IEEE Solid-States Circuits Magazine - Spring 2020 - 59
IEEE Solid-States Circuits Magazine - Spring 2020 - 60
IEEE Solid-States Circuits Magazine - Spring 2020 - 61
IEEE Solid-States Circuits Magazine - Spring 2020 - 62
IEEE Solid-States Circuits Magazine - Spring 2020 - 63
IEEE Solid-States Circuits Magazine - Spring 2020 - 64
IEEE Solid-States Circuits Magazine - Spring 2020 - 65
IEEE Solid-States Circuits Magazine - Spring 2020 - 66
IEEE Solid-States Circuits Magazine - Spring 2020 - 67
IEEE Solid-States Circuits Magazine - Spring 2020 - 68
IEEE Solid-States Circuits Magazine - Spring 2020 - 69
IEEE Solid-States Circuits Magazine - Spring 2020 - 70
IEEE Solid-States Circuits Magazine - Spring 2020 - 71
IEEE Solid-States Circuits Magazine - Spring 2020 - 72
IEEE Solid-States Circuits Magazine - Spring 2020 - 73
IEEE Solid-States Circuits Magazine - Spring 2020 - 74
IEEE Solid-States Circuits Magazine - Spring 2020 - 75
IEEE Solid-States Circuits Magazine - Spring 2020 - 76
IEEE Solid-States Circuits Magazine - Spring 2020 - 77
IEEE Solid-States Circuits Magazine - Spring 2020 - 78
IEEE Solid-States Circuits Magazine - Spring 2020 - 79
IEEE Solid-States Circuits Magazine - Spring 2020 - 80
IEEE Solid-States Circuits Magazine - Spring 2020 - 81
IEEE Solid-States Circuits Magazine - Spring 2020 - 82
IEEE Solid-States Circuits Magazine - Spring 2020 - 83
IEEE Solid-States Circuits Magazine - Spring 2020 - 84
IEEE Solid-States Circuits Magazine - Spring 2020 - 85
IEEE Solid-States Circuits Magazine - Spring 2020 - 86
IEEE Solid-States Circuits Magazine - Spring 2020 - 87
IEEE Solid-States Circuits Magazine - Spring 2020 - 88
IEEE Solid-States Circuits Magazine - Spring 2020 - 89
IEEE Solid-States Circuits Magazine - Spring 2020 - 90
IEEE Solid-States Circuits Magazine - Spring 2020 - 91
IEEE Solid-States Circuits Magazine - Spring 2020 - 92
IEEE Solid-States Circuits Magazine - Spring 2020 - 93
IEEE Solid-States Circuits Magazine - Spring 2020 - 94
IEEE Solid-States Circuits Magazine - Spring 2020 - 95
IEEE Solid-States Circuits Magazine - Spring 2020 - 96
IEEE Solid-States Circuits Magazine - Spring 2020 - 97
IEEE Solid-States Circuits Magazine - Spring 2020 - 98
IEEE Solid-States Circuits Magazine - Spring 2020 - 99
IEEE Solid-States Circuits Magazine - Spring 2020 - 100
IEEE Solid-States Circuits Magazine - Spring 2020 - 101
IEEE Solid-States Circuits Magazine - Spring 2020 - 102
IEEE Solid-States Circuits Magazine - Spring 2020 - 103
IEEE Solid-States Circuits Magazine - Spring 2020 - 104
IEEE Solid-States Circuits Magazine - Spring 2020 - 105
IEEE Solid-States Circuits Magazine - Spring 2020 - 106
IEEE Solid-States Circuits Magazine - Spring 2020 - 107
IEEE Solid-States Circuits Magazine - Spring 2020 - 108
IEEE Solid-States Circuits Magazine - Spring 2020 - 109
IEEE Solid-States Circuits Magazine - Spring 2020 - 110
IEEE Solid-States Circuits Magazine - Spring 2020 - 111
IEEE Solid-States Circuits Magazine - Spring 2020 - 112
IEEE Solid-States Circuits Magazine - Spring 2020 - 113
IEEE Solid-States Circuits Magazine - Spring 2020 - 114
IEEE Solid-States Circuits Magazine - Spring 2020 - 115
IEEE Solid-States Circuits Magazine - Spring 2020 - 116
IEEE Solid-States Circuits Magazine - Spring 2020 - 117
IEEE Solid-States Circuits Magazine - Spring 2020 - 118
IEEE Solid-States Circuits Magazine - Spring 2020 - 119
IEEE Solid-States Circuits Magazine - Spring 2020 - 120
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover3
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com