IEEE Solid-States Circuits Magazine - Spring 2020 - 44

103

RZ
ASK/OOK
FSK
Backscatter
UWB
PM
LSK

DR (Mb/s)

102

101

100

10-1

2004

2006

2008

2010 2012
Year

2014

2016

2018 2020

FIGURE 12: The trends in reported data rates over the last 15 years. RZ: return-to-zero;
ASK: amplitude-shift keying; OOK: on-off keying; FSK: frequency-shift keying; UWB: ultrawideband; PM: pulse modulation; LSK: load-shift keying.

and high data rates by transmitting
data using wideband pulses over
inductive links. Schormans et al.
recently presented a pulse-harmonic
modulation (PHM) approach, coined
short-range quality-factor modulation (SQuirM), that can support data
rates of 50 Mb/s while consuming
400 nW, resulting in an energy efficien-
cy of 8 pJ/b (picojoule/bit) [44]. The
-
need to achieve data rates beyond
10 Mb/s to accommodate a high channel count in modern neural interfaces
has motivated the use of far-field
radio-frequency (RF) links for data
transfer (often in combination with
inductive links for powering [45]-
[47]). In far-field systems, FCC-regulated ISM bands are often used,
including 433 MHz, 915 MHz, and
2.4 GHz. Impulse-radio ultrawideband
(UWB) communication has become
increasingly popular in the domain
of implantable devices, thanks to its
ability to support ultrahigh data rates
in excess of 50 Mb/s. Mirbozorgi
et. al. recently presented a UWB system working in the frequency band
between 3.1 and 7 GHz that is capable
of achieving data rates on the order
of 500 Mb/s while consuming only
3.5 mW, resulting in a high energy
efficiency of 7 pJ/b, comparable to
PHM in inductive links. Figure 12

44	

S P R I N G 2 0 2 0	

shows the trends in reported data
rates achieved by different modulation schemes.
RF links will likely be the dominant choice for future high-density
wireless neural implants. UWB, in
particular, is poised to become the
prevailing strategy to achieve energyefficient high-data rate to support
future high-density wireless neural
interfaces. Coupled with the design
of ultralow-power circuits and signal
processing, the design of robust and
energy-efficient links will support
further scaling and miniaturization
of future neural implants.

Conclusions
This tutorial presented a general
framework for bioelectronic platforms from a circuit perspective, in--
cluding all of the critical components
for the technology stack. In the future,
the use of bioelectronic systems with
complex control could usher in an era
of therapies that complement pharmaceutical methods.

References

[1]	 N. A. Fineberg et al., "The size, burden
and cost of disorders of the brain in
the UK," J. Psychopharmacol., vol. 27,
no. 9, pp. 761-770, 2013. doi: 10.1177/
0269881113495118.
[2]	 K. Famm, B. Litt, K. J. Tracey, E. S. Boyden,
and M. Slaoui, "Drug discovery: A jump-

IEEE SOLID-STATE CIRCUITS MAGAZINE	

start for electroceuticals," Nature, vol.
496, no. 7444, pp. 159-161, Apr. 11, 2013.
doi: 10.1038/496159a.
[3]	 P. Khanna et al., "Enabling closed-loop
neurostimulation research with downloadable firmware upgrades," in Proc.
2015 IEEE Biomedical Circuits and Systems
Conf. (BioCAS), pp. 1-6. doi: 10.1109/BioCAS.2015.7348348.
[4]	 R. P. Rao, "Towards neural co-processors
for the brain: Combining decoding and encoding in brain-computer interfaces," Curr.
Opin. Neurobiol., vol. 55, pp. 142-151, Apr.
2019. doi: 10.1016/j.conb.2019.03.008.
[5]	 S. Stanslaski et al., "A chronically-implanted neural coprocessor for exploring
treatments for neurological disorders,"
IEEE Trans. Biomed. Circuits Syst., vol. 12,
no. 6, pp. 1230-1245, Nov. 7, 2018. doi:
10.1109/TBCAS.2018.2880148.
[6]	 S. Stanslaski et al., "Creating neural "coprocessors" to explore treatments for neurological disorders," in Proc. 2018 IEEE Int.
Solid-State Circuits Conf. (ISSCC), pp. 460-
462. doi: 10.1109/ISSCC.2018.8310383.
[7]	 M. Lloyd et al., "Rate adaptive pacing in an
intracardiac pacemaker," Heart Rhythm,
vol. 14, no. 2, pp. 200-205, Feb. 2017. doi:
10.1016/j.hrthm.2016.11.016.
[8]	 T. Denison, M. Morris, and F. Sun, "Building a bionic nervous system," IEEE Spectr., vol. 52, no. 2, pp. 32-39, 2015. doi:
10.1109/MSPEC.2015.7024509.
[9]	 V. K. Rathi, N. S. Kondamuri, M. R. Naunheim,
S. K. Gadkaree, R. B. Metson, and G. A.
Scangas, "Use and cost of a hypoglossal
nerve stimulator device for obstructive
sleep apnea between 2015 and 2018,"
JAMA Otolaryngol. Head Neck Surg., vol.
145, no. 10, pp. 975-977, Aug. 22, 2019.
doi: 10.1001/jamaoto.2019.2366.
[10]	M. J. Vansteensel et al., "Fully implanted
brain-computer interface in a locked-in
patient with ALS," N Engl. J. Med., vol. 375,
no. 21, pp. 2060-2066, Nov. 24, 2016. doi:
10.1056/NEJMoa1608085.
[11]	R. Harrison, "The design of integrated circuits to observe brain activity," Proc. IEEE,
vol. 96, no. 7, pp. 1203-1216, 2008. doi:
10.1109/JPROC.2008.922581.
[12]	S. Ha et al., "Silicon-integrated high-density electrocortical interfaces," Proc. IEEE,
vol. 105, no. 1, pp. 11-33, 2017. doi: 10.1109/
JPROC.2016.2587690.
[13]	J. J. Jun et al., "Fully integrated silicon
probes for high-density recording of neural activity," Nature, vol. 551, no. 7679, pp.
232-236, 2017. doi: 10.1038/nature24636.
[14]	N. Ahmadi et al., "Towards a distributed,
chronically-implantable neural interface,"
in Proc. 2019 9th Int. IEEE/EMBS Conf. Neural Engineering (NER), pp. 719-724. doi:
10.1109/NER.2019.8716998.
[15]	R. M. Neely, D. K. Piech, S. R. Santacruz,
M. M. Maharbiz, and J. M. Carmena, "Recent advances in neural dust: Towards
a neural interface platform," Curr. Opin.
Neurobiol., vol. 50, pp. 64-71, June 2018.
doi: 10.1016/j.conb.2017.12.010.
[16]	A. Bashashati, M. Fatourechi, R. K. Ward,
and G. E. Birch, "A survey of signal processing algorithms in brain-computer interfaces
based on electrical brain signals," J. Neural
Eng., vol. 4, no. 2, pp. R32-R57, June 2007.
doi: 10.1088/1741-2560/4/2/R03.
[17]	E. Noorsal, K. Sooksood, H. Xu, R. Hornig,
J. Becker, and M. Ortmanns, "A neural stimulator frontend with high-voltage compliance and programmable pulse shape for
epiretinal implants," IEEE J. Solid-State
Circuits, vol. 47, no. 1, pp. 244-256, 2012.
doi: 10.1109/JSSC.2011.2164667.
[18]	K. Chen, Y. K. Lo, and W. Liu, "A 37.6mm2
1024-channel high-compliance-voltage



IEEE Solid-States Circuits Magazine - Spring 2020

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Spring 2020

Contents
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover1
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover2
IEEE Solid-States Circuits Magazine - Spring 2020 - Contents
IEEE Solid-States Circuits Magazine - Spring 2020 - 2
IEEE Solid-States Circuits Magazine - Spring 2020 - 3
IEEE Solid-States Circuits Magazine - Spring 2020 - 4
IEEE Solid-States Circuits Magazine - Spring 2020 - 5
IEEE Solid-States Circuits Magazine - Spring 2020 - 6
IEEE Solid-States Circuits Magazine - Spring 2020 - 7
IEEE Solid-States Circuits Magazine - Spring 2020 - 8
IEEE Solid-States Circuits Magazine - Spring 2020 - 9
IEEE Solid-States Circuits Magazine - Spring 2020 - 10
IEEE Solid-States Circuits Magazine - Spring 2020 - 11
IEEE Solid-States Circuits Magazine - Spring 2020 - 12
IEEE Solid-States Circuits Magazine - Spring 2020 - 13
IEEE Solid-States Circuits Magazine - Spring 2020 - 14
IEEE Solid-States Circuits Magazine - Spring 2020 - 15
IEEE Solid-States Circuits Magazine - Spring 2020 - 16
IEEE Solid-States Circuits Magazine - Spring 2020 - 17
IEEE Solid-States Circuits Magazine - Spring 2020 - 18
IEEE Solid-States Circuits Magazine - Spring 2020 - 19
IEEE Solid-States Circuits Magazine - Spring 2020 - 20
IEEE Solid-States Circuits Magazine - Spring 2020 - 21
IEEE Solid-States Circuits Magazine - Spring 2020 - 22
IEEE Solid-States Circuits Magazine - Spring 2020 - 23
IEEE Solid-States Circuits Magazine - Spring 2020 - 24
IEEE Solid-States Circuits Magazine - Spring 2020 - 25
IEEE Solid-States Circuits Magazine - Spring 2020 - 26
IEEE Solid-States Circuits Magazine - Spring 2020 - 27
IEEE Solid-States Circuits Magazine - Spring 2020 - 28
IEEE Solid-States Circuits Magazine - Spring 2020 - 29
IEEE Solid-States Circuits Magazine - Spring 2020 - 30
IEEE Solid-States Circuits Magazine - Spring 2020 - 31
IEEE Solid-States Circuits Magazine - Spring 2020 - 32
IEEE Solid-States Circuits Magazine - Spring 2020 - 33
IEEE Solid-States Circuits Magazine - Spring 2020 - 34
IEEE Solid-States Circuits Magazine - Spring 2020 - 35
IEEE Solid-States Circuits Magazine - Spring 2020 - 36
IEEE Solid-States Circuits Magazine - Spring 2020 - 37
IEEE Solid-States Circuits Magazine - Spring 2020 - 38
IEEE Solid-States Circuits Magazine - Spring 2020 - 39
IEEE Solid-States Circuits Magazine - Spring 2020 - 40
IEEE Solid-States Circuits Magazine - Spring 2020 - 41
IEEE Solid-States Circuits Magazine - Spring 2020 - 42
IEEE Solid-States Circuits Magazine - Spring 2020 - 43
IEEE Solid-States Circuits Magazine - Spring 2020 - 44
IEEE Solid-States Circuits Magazine - Spring 2020 - 45
IEEE Solid-States Circuits Magazine - Spring 2020 - 46
IEEE Solid-States Circuits Magazine - Spring 2020 - 47
IEEE Solid-States Circuits Magazine - Spring 2020 - 48
IEEE Solid-States Circuits Magazine - Spring 2020 - 49
IEEE Solid-States Circuits Magazine - Spring 2020 - 50
IEEE Solid-States Circuits Magazine - Spring 2020 - 51
IEEE Solid-States Circuits Magazine - Spring 2020 - 52
IEEE Solid-States Circuits Magazine - Spring 2020 - 53
IEEE Solid-States Circuits Magazine - Spring 2020 - 54
IEEE Solid-States Circuits Magazine - Spring 2020 - 55
IEEE Solid-States Circuits Magazine - Spring 2020 - 56
IEEE Solid-States Circuits Magazine - Spring 2020 - 57
IEEE Solid-States Circuits Magazine - Spring 2020 - 58
IEEE Solid-States Circuits Magazine - Spring 2020 - 59
IEEE Solid-States Circuits Magazine - Spring 2020 - 60
IEEE Solid-States Circuits Magazine - Spring 2020 - 61
IEEE Solid-States Circuits Magazine - Spring 2020 - 62
IEEE Solid-States Circuits Magazine - Spring 2020 - 63
IEEE Solid-States Circuits Magazine - Spring 2020 - 64
IEEE Solid-States Circuits Magazine - Spring 2020 - 65
IEEE Solid-States Circuits Magazine - Spring 2020 - 66
IEEE Solid-States Circuits Magazine - Spring 2020 - 67
IEEE Solid-States Circuits Magazine - Spring 2020 - 68
IEEE Solid-States Circuits Magazine - Spring 2020 - 69
IEEE Solid-States Circuits Magazine - Spring 2020 - 70
IEEE Solid-States Circuits Magazine - Spring 2020 - 71
IEEE Solid-States Circuits Magazine - Spring 2020 - 72
IEEE Solid-States Circuits Magazine - Spring 2020 - 73
IEEE Solid-States Circuits Magazine - Spring 2020 - 74
IEEE Solid-States Circuits Magazine - Spring 2020 - 75
IEEE Solid-States Circuits Magazine - Spring 2020 - 76
IEEE Solid-States Circuits Magazine - Spring 2020 - 77
IEEE Solid-States Circuits Magazine - Spring 2020 - 78
IEEE Solid-States Circuits Magazine - Spring 2020 - 79
IEEE Solid-States Circuits Magazine - Spring 2020 - 80
IEEE Solid-States Circuits Magazine - Spring 2020 - 81
IEEE Solid-States Circuits Magazine - Spring 2020 - 82
IEEE Solid-States Circuits Magazine - Spring 2020 - 83
IEEE Solid-States Circuits Magazine - Spring 2020 - 84
IEEE Solid-States Circuits Magazine - Spring 2020 - 85
IEEE Solid-States Circuits Magazine - Spring 2020 - 86
IEEE Solid-States Circuits Magazine - Spring 2020 - 87
IEEE Solid-States Circuits Magazine - Spring 2020 - 88
IEEE Solid-States Circuits Magazine - Spring 2020 - 89
IEEE Solid-States Circuits Magazine - Spring 2020 - 90
IEEE Solid-States Circuits Magazine - Spring 2020 - 91
IEEE Solid-States Circuits Magazine - Spring 2020 - 92
IEEE Solid-States Circuits Magazine - Spring 2020 - 93
IEEE Solid-States Circuits Magazine - Spring 2020 - 94
IEEE Solid-States Circuits Magazine - Spring 2020 - 95
IEEE Solid-States Circuits Magazine - Spring 2020 - 96
IEEE Solid-States Circuits Magazine - Spring 2020 - 97
IEEE Solid-States Circuits Magazine - Spring 2020 - 98
IEEE Solid-States Circuits Magazine - Spring 2020 - 99
IEEE Solid-States Circuits Magazine - Spring 2020 - 100
IEEE Solid-States Circuits Magazine - Spring 2020 - 101
IEEE Solid-States Circuits Magazine - Spring 2020 - 102
IEEE Solid-States Circuits Magazine - Spring 2020 - 103
IEEE Solid-States Circuits Magazine - Spring 2020 - 104
IEEE Solid-States Circuits Magazine - Spring 2020 - 105
IEEE Solid-States Circuits Magazine - Spring 2020 - 106
IEEE Solid-States Circuits Magazine - Spring 2020 - 107
IEEE Solid-States Circuits Magazine - Spring 2020 - 108
IEEE Solid-States Circuits Magazine - Spring 2020 - 109
IEEE Solid-States Circuits Magazine - Spring 2020 - 110
IEEE Solid-States Circuits Magazine - Spring 2020 - 111
IEEE Solid-States Circuits Magazine - Spring 2020 - 112
IEEE Solid-States Circuits Magazine - Spring 2020 - 113
IEEE Solid-States Circuits Magazine - Spring 2020 - 114
IEEE Solid-States Circuits Magazine - Spring 2020 - 115
IEEE Solid-States Circuits Magazine - Spring 2020 - 116
IEEE Solid-States Circuits Magazine - Spring 2020 - 117
IEEE Solid-States Circuits Magazine - Spring 2020 - 118
IEEE Solid-States Circuits Magazine - Spring 2020 - 119
IEEE Solid-States Circuits Magazine - Spring 2020 - 120
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover3
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com