IEEE Solid-States Circuits Magazine - Spring 2020 - 48
The main idea behind time encoding consists of
representing an analog signal with a modulated
square wave, where the signal information
is encoded in the transitions instead of in
the instantaneous amplitude.
worldwide have been published in
application domains such as sensor
readout [7]-[10], telecom [11]-[13],
wideband wireless [14]-[18], the Internet of Things [19], automotive [20],
[21], and biomedical [22] -[24], to
name a few. Note that the integrat--
ing properties of VCOs have also
been used to implement continuoustime filters, time-to-digital converters,
and other analog signal processing
blocks [25]-[27].
The main idea behind time encoding consists of representing an analog signal with a modulated square
wave, where the signal information is
encoded in the transitions instead of
in the instantaneous amplitude. Such
a signal is easy to handle with digital
circuits and robust against noise and
distortion. Representing the analog signal information is, then, done through
pulse modulations. Pulsewidth modulation (PWM) is one of the best examples and is used extensively in, for
instance, power electronics. The typical block diagram of a time-encoding
ADC is shown in Figure 1. The analog
input signal is applied to a pulse modulator that encodes the information
in the pulsewidth, frequency, or position of a signal (or set of signals) with
two levels only. This two-level signal, which is still analog, is sampled
afterward at a sampling frequency fs ,
typically much larger than the input
signal bandwidth ABW. Differing from
conventional ADCs, the sampler can
VCO-Based Analog-to-Digital
Conversion: Basic Principles
fs
Pulse
Modulator
Decoder
(Low-Pass
Filter)
D Q
FIGURE 1: The principle signal operations in a time-encoding ADC.
Sampling Clock
Reset
VCO
Clock
D0
Y0
D1
Y1
Counter
.
.
.
DN
Register
.
.
.
ADC
Output
YN
FIGURE 2: The conceptual block diagram of an open-loop VCO-based ADC with a counter.
48
S P R I N G 2 0 2 0
IEEE SOLID-STATE CIRCUITS MAGAZINE
now be a simple flip-flop, as the signal
has only two values. From the sampled
square wave, a decoder can reconstruct a multibit approximation of the
analog input signal, which is typically
done with a digital low-pass filter.
Although early time-encoding ADCs
used PWM [1], [2], PWM may not be the
best option to replace analog circuits
in an ADC. Indeed, PWM modulators
require sawtooth generators or analog
filters, which are still made of operational amplifiers (op-amps) and other
highly linear circuits [28], [29]. VCObased ADCs, on the other hand, can
be implemented very efficiently with
a ring oscillator, which is a simple
digital circuit [30], [31]. To be precise,
VCO-based ADCs need to be modeled
using a different type of pulse modulation, called pulse-frequency modulation (PFM). PFM exhibits first-order
noise shaping when sampled directly,
contrary to other pulse modulations,
such as PWM. The hardware simplicity and digital nature of ring oscillators and the noise-shaping properties
of PFM have led to VCO-based ADCs'
wide popularity. We will, therefore,
concentrate most of our discussion on
VCO-based ADCs.
So how do VCO-based ADCs digitize
an analog signal? We give an intuitive
explanation of this function without detailed mathematics. Figure 2
depicts the simplest VCO-based ADC
architecture, which is also one of the
most used. A slowly varying input
signal modulates the frequency of
an oscillator (the VCO). The pulses of
the oscillator are then counted with a
digital counter. Assuming a sampling
period Ts = 1/fs, the number of pulses
accumulated in the counter is dumped
into a register every Ts seconds, and
the counter is reset. The value in the
register is therefore a measure of the
VCO frequency and hence of the analog input signal during that sample.
Clearly, the higher the oscillation
frequency compared to the sampling
frequency, the higher the resolution
that can be achieved. This defines
IEEE Solid-States Circuits Magazine - Spring 2020
Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Spring 2020
Contents
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover1
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover2
IEEE Solid-States Circuits Magazine - Spring 2020 - Contents
IEEE Solid-States Circuits Magazine - Spring 2020 - 2
IEEE Solid-States Circuits Magazine - Spring 2020 - 3
IEEE Solid-States Circuits Magazine - Spring 2020 - 4
IEEE Solid-States Circuits Magazine - Spring 2020 - 5
IEEE Solid-States Circuits Magazine - Spring 2020 - 6
IEEE Solid-States Circuits Magazine - Spring 2020 - 7
IEEE Solid-States Circuits Magazine - Spring 2020 - 8
IEEE Solid-States Circuits Magazine - Spring 2020 - 9
IEEE Solid-States Circuits Magazine - Spring 2020 - 10
IEEE Solid-States Circuits Magazine - Spring 2020 - 11
IEEE Solid-States Circuits Magazine - Spring 2020 - 12
IEEE Solid-States Circuits Magazine - Spring 2020 - 13
IEEE Solid-States Circuits Magazine - Spring 2020 - 14
IEEE Solid-States Circuits Magazine - Spring 2020 - 15
IEEE Solid-States Circuits Magazine - Spring 2020 - 16
IEEE Solid-States Circuits Magazine - Spring 2020 - 17
IEEE Solid-States Circuits Magazine - Spring 2020 - 18
IEEE Solid-States Circuits Magazine - Spring 2020 - 19
IEEE Solid-States Circuits Magazine - Spring 2020 - 20
IEEE Solid-States Circuits Magazine - Spring 2020 - 21
IEEE Solid-States Circuits Magazine - Spring 2020 - 22
IEEE Solid-States Circuits Magazine - Spring 2020 - 23
IEEE Solid-States Circuits Magazine - Spring 2020 - 24
IEEE Solid-States Circuits Magazine - Spring 2020 - 25
IEEE Solid-States Circuits Magazine - Spring 2020 - 26
IEEE Solid-States Circuits Magazine - Spring 2020 - 27
IEEE Solid-States Circuits Magazine - Spring 2020 - 28
IEEE Solid-States Circuits Magazine - Spring 2020 - 29
IEEE Solid-States Circuits Magazine - Spring 2020 - 30
IEEE Solid-States Circuits Magazine - Spring 2020 - 31
IEEE Solid-States Circuits Magazine - Spring 2020 - 32
IEEE Solid-States Circuits Magazine - Spring 2020 - 33
IEEE Solid-States Circuits Magazine - Spring 2020 - 34
IEEE Solid-States Circuits Magazine - Spring 2020 - 35
IEEE Solid-States Circuits Magazine - Spring 2020 - 36
IEEE Solid-States Circuits Magazine - Spring 2020 - 37
IEEE Solid-States Circuits Magazine - Spring 2020 - 38
IEEE Solid-States Circuits Magazine - Spring 2020 - 39
IEEE Solid-States Circuits Magazine - Spring 2020 - 40
IEEE Solid-States Circuits Magazine - Spring 2020 - 41
IEEE Solid-States Circuits Magazine - Spring 2020 - 42
IEEE Solid-States Circuits Magazine - Spring 2020 - 43
IEEE Solid-States Circuits Magazine - Spring 2020 - 44
IEEE Solid-States Circuits Magazine - Spring 2020 - 45
IEEE Solid-States Circuits Magazine - Spring 2020 - 46
IEEE Solid-States Circuits Magazine - Spring 2020 - 47
IEEE Solid-States Circuits Magazine - Spring 2020 - 48
IEEE Solid-States Circuits Magazine - Spring 2020 - 49
IEEE Solid-States Circuits Magazine - Spring 2020 - 50
IEEE Solid-States Circuits Magazine - Spring 2020 - 51
IEEE Solid-States Circuits Magazine - Spring 2020 - 52
IEEE Solid-States Circuits Magazine - Spring 2020 - 53
IEEE Solid-States Circuits Magazine - Spring 2020 - 54
IEEE Solid-States Circuits Magazine - Spring 2020 - 55
IEEE Solid-States Circuits Magazine - Spring 2020 - 56
IEEE Solid-States Circuits Magazine - Spring 2020 - 57
IEEE Solid-States Circuits Magazine - Spring 2020 - 58
IEEE Solid-States Circuits Magazine - Spring 2020 - 59
IEEE Solid-States Circuits Magazine - Spring 2020 - 60
IEEE Solid-States Circuits Magazine - Spring 2020 - 61
IEEE Solid-States Circuits Magazine - Spring 2020 - 62
IEEE Solid-States Circuits Magazine - Spring 2020 - 63
IEEE Solid-States Circuits Magazine - Spring 2020 - 64
IEEE Solid-States Circuits Magazine - Spring 2020 - 65
IEEE Solid-States Circuits Magazine - Spring 2020 - 66
IEEE Solid-States Circuits Magazine - Spring 2020 - 67
IEEE Solid-States Circuits Magazine - Spring 2020 - 68
IEEE Solid-States Circuits Magazine - Spring 2020 - 69
IEEE Solid-States Circuits Magazine - Spring 2020 - 70
IEEE Solid-States Circuits Magazine - Spring 2020 - 71
IEEE Solid-States Circuits Magazine - Spring 2020 - 72
IEEE Solid-States Circuits Magazine - Spring 2020 - 73
IEEE Solid-States Circuits Magazine - Spring 2020 - 74
IEEE Solid-States Circuits Magazine - Spring 2020 - 75
IEEE Solid-States Circuits Magazine - Spring 2020 - 76
IEEE Solid-States Circuits Magazine - Spring 2020 - 77
IEEE Solid-States Circuits Magazine - Spring 2020 - 78
IEEE Solid-States Circuits Magazine - Spring 2020 - 79
IEEE Solid-States Circuits Magazine - Spring 2020 - 80
IEEE Solid-States Circuits Magazine - Spring 2020 - 81
IEEE Solid-States Circuits Magazine - Spring 2020 - 82
IEEE Solid-States Circuits Magazine - Spring 2020 - 83
IEEE Solid-States Circuits Magazine - Spring 2020 - 84
IEEE Solid-States Circuits Magazine - Spring 2020 - 85
IEEE Solid-States Circuits Magazine - Spring 2020 - 86
IEEE Solid-States Circuits Magazine - Spring 2020 - 87
IEEE Solid-States Circuits Magazine - Spring 2020 - 88
IEEE Solid-States Circuits Magazine - Spring 2020 - 89
IEEE Solid-States Circuits Magazine - Spring 2020 - 90
IEEE Solid-States Circuits Magazine - Spring 2020 - 91
IEEE Solid-States Circuits Magazine - Spring 2020 - 92
IEEE Solid-States Circuits Magazine - Spring 2020 - 93
IEEE Solid-States Circuits Magazine - Spring 2020 - 94
IEEE Solid-States Circuits Magazine - Spring 2020 - 95
IEEE Solid-States Circuits Magazine - Spring 2020 - 96
IEEE Solid-States Circuits Magazine - Spring 2020 - 97
IEEE Solid-States Circuits Magazine - Spring 2020 - 98
IEEE Solid-States Circuits Magazine - Spring 2020 - 99
IEEE Solid-States Circuits Magazine - Spring 2020 - 100
IEEE Solid-States Circuits Magazine - Spring 2020 - 101
IEEE Solid-States Circuits Magazine - Spring 2020 - 102
IEEE Solid-States Circuits Magazine - Spring 2020 - 103
IEEE Solid-States Circuits Magazine - Spring 2020 - 104
IEEE Solid-States Circuits Magazine - Spring 2020 - 105
IEEE Solid-States Circuits Magazine - Spring 2020 - 106
IEEE Solid-States Circuits Magazine - Spring 2020 - 107
IEEE Solid-States Circuits Magazine - Spring 2020 - 108
IEEE Solid-States Circuits Magazine - Spring 2020 - 109
IEEE Solid-States Circuits Magazine - Spring 2020 - 110
IEEE Solid-States Circuits Magazine - Spring 2020 - 111
IEEE Solid-States Circuits Magazine - Spring 2020 - 112
IEEE Solid-States Circuits Magazine - Spring 2020 - 113
IEEE Solid-States Circuits Magazine - Spring 2020 - 114
IEEE Solid-States Circuits Magazine - Spring 2020 - 115
IEEE Solid-States Circuits Magazine - Spring 2020 - 116
IEEE Solid-States Circuits Magazine - Spring 2020 - 117
IEEE Solid-States Circuits Magazine - Spring 2020 - 118
IEEE Solid-States Circuits Magazine - Spring 2020 - 119
IEEE Solid-States Circuits Magazine - Spring 2020 - 120
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover3
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com