IEEE Solid-States Circuits Magazine - Spring 2020 - 54
Practical Design Example
To illustrate the preceding concepts,
and as example of the different design
methodology needed for VCO-based
ADCs, we now describe the circuit given
in [9], which is intended for audio
applications. It is a very simple VCObased ADC, yet it shows the full potential of time encoding. The core of the
ADC consists of two twin VCOs implemented with 11-phase ring oscillators.
The VCOs are driven by a differential
transconductor that isolates them
from the input, which, in this case, is
a high-output-impedance microelectromechanical system microphone.
All current used by the transconductor is, at the same time, powering the
VCOs (see Figure 10). The transistors in
the ring oscillator have widths on the
order of 30 nm. This large transistor
size, compared to what would be used
for this frequency in a PLL, is needed
to satisfy the input-referred noise re--
quirement relative to the quantization
noise of the converter (on the order
of a few microvolts).
The chip uses the multiphase readout circuit in Figure 12 to count the
edges in the ring oscillator phases
W 1 ...W M with as little power as possible. The multiphase readout circuit
is implemented with a Gray counter
connected to a reference phase, providing a coarse quantization code
and an encoder block that refines the
total edge count from samples of the
ring oscillator state. The encoder
block operates at the sampling clock
(2.4 MHz in this case), much slower
than the coarse counter (approximately
50 MHz). The digital and analog power
consumption is each roughly half
the varchitecture pays off in distortion
mitigation (the peak SNDR is 70 dB in
20 kHz of bandwidth without feedback) and very good power-supply
rejection (which exceeds 80 dB in
spite of the poor inherent power-supply rejection of a single VCO channel).
Takeaway Points
■■
Time-encoding VCO-based ADCs
are an interesting ADC architecture in deeply scaled CMOS technologies, as they generally use
54
S P R I N G 2 0 2 0
■■
■■
■■
■■
digital circuits and frequency-encoded square wave signals rather
than voltage or current linear circuits, resulting in a small area and
good power efficiency.
Open-loop VCO-based ADCs resemble closed-loop delta-sigma modulators in the sense that they behave
as first-order, multibit delta-sigma
modulators. The key system-level
design parameters to achieve a target SQNR performance are the rest
oscillation frequency and sampling
frequency. Here, the phase-domain
model (Figure 6) and corresponding SNR (1) should be the start of
your first design iteration.
To understand more subtle system-level effects (such as overloading and spurious baseband
tones), PFM theory is needed.
To get good distortion and PSRR
performance, a twin setup with
two pseudodifferentially driven
VCOs should always be used in
the basic configuration. In part 2
of this article to be published in
a later issue, more complex architectures for even better performance will be discussed.
To design the core VCO, a PLL architecture style is not the best
approach. Instead, it is important
to think in terms of the input-referred noise of the VCO, leading to
large devices in the VCO core. Designing the VCO mixes traditional
analog amplifier design and VCO
design for PLLs. Hence, it is a craft
of its own.
Acknowledgments
This work was supported by Spanish
Ministry of Science and Innovation project TEC2017-82653-R and the Fund for
Scientific Research Flanders (Research
Foundation-Flanders), Belgium.
References
[1] E. Roza, "Analog-to-digital conversion via
duty-cycle modulation," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,
vol. 44, no. 11, pp. 907-914, Nov. 1997.
doi: 10.1109/82.644044.
[2] A. A. Lazar and L. T. Toth, "Perfect recovery and sensitivity analysis of time encoded bandlimited signals," IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 51, no. 10,
pp. 2060-2073, Oct. 2004. doi: 10.1109/
TCSI.2004.835026.
IEEE SOLID-STATE CIRCUITS MAGAZINE
[3] Y. Tsividis, "Mixed-domain systems and
signal processing based on input decomposition," IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 53, no. 10, pp. 2145-2156, Oct.
2006. doi: 10.1109/TCSI.2006.882822.
[4] M. Hovin, A. Olsen, T. S. Lande, and C.
Toumazou, "Delta-sigma modulators using frequency-modulated intermediate
values," IEEE J. Solid-State Circuits, vol. 32,
no. 1, pp. 13-22, Jan. 1997. doi: 10.1109/
4.553171.
[5] R. Naiknaware, H. Tang, and T. S. Fiez,
"Time-referenced single-path multi-bit DR
ADC using a VCO-based quantizer," IEEE
Trans. Circuits Syst. II, Analog Digit. Signal
Process., vol. 47, no. 7, pp. 596-602, July
2000. doi: 10.1109/82.850418.
[6] M. Z. Straayer and M. H. Perrott, "A 12bit, 10 MHz bandwidth, continuous-time
sigma-delta ADC with a 5-bit, 950-MS/s
VCO-based quantizer," IEEE J. Solid-State
Circuits, vol. 43, no. 4, pp. 805-814, Apr.
2008. doi: 10.1109/JSSC.2008.917500.
[7] T. Anand, K. A. A. Makinwa, and P. K. Hanumolu, "A VCO based highly digital temperature sensor with 0.034 C/mV supply sensitivity," IEEE J. Solid-State Circuits, vol. 51, no.
11, pp. 2651-2663, Nov. 2016. doi: 10.1109/
JSSC.2016.2598765.
[8] C. Tu, Y. Wang, and T. Lin, "A low-noise area-efficient chopped VCO-based CTDSM for
sensor applications in 40-nm CMOS," IEEE J.
Solid-State Circuits, vol. 52, no. 10, pp. 2523-
2532, Oct. 2017. doi: 10.1109/JSSC.2017.
2724025.
[9] A. Quintero et al., "A coarse-fine VCO-ADC
for MEMS microphones with sampling
synchronization by data scrambling," IEEE
Solid-State Circuits Lett., vol. 3, pp. 29-32,
2020. doi: 10.1109/LSSC.2020.2964158.
[10] J. Van Rethy, H. Danneels, V. De Smedt, W.
Dehaene, and G. E. Gielen, "Supply-noiseresilient design of a BBPLL-based forcebalanced wheatstone bridge interface in
130-nm CMOS," IEEE J. Solid-State Circuits,
vol. 48, no. 11, pp. 2618-2627, Nov. 2013.
doi: 10.1109/JSSC.2013.2274831.
[11] S. Huang, N. Egan, D. Kesharwani, F. Opteynde, and M. Ashburn, "28.3 A 125 MHzBW 71.9 dB-SNDR VCO-based CT SD ADC
with segmented phase-domain ELD compensation in 16nm CMOS," in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC), Feb. 2017,
pp. 470 - 471. doi: 10.1109/ISSCC.2017.
7870465.
[12] J. Daniels, W. Dehaene, M. Steyaert, and
A. Wiesbauer, "A 0.02 mm2 65 nm CMOS
30 MHz BW all-digital differential VCObased ADC with 64 dB SNDR," in Proc.
Symp. VLSI Circuits, June 2010, pp. 155-
156. doi: 10.1109/VLSIC.2010.5560314.
[13] X. Xing and G. G. E. Gielen, "A 42 fJ/StepFoM two-step VCO-based delta-sigma ADC
in 40 nm CMOS," IEEE J. Solid-State Circuits,
vol. 50, no. 3, pp. 714-723, Mar. 2015. doi:
10.1109/JSSC.2015.2393814.
[14] G. Taylor and I. Galton, "A mostly-digital
variable-rate continuous-time delta-sigma modulator ADC," IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2634-2646, Dec.
2010. doi: 10.1109/JSSC.2010.2073193.
[15] F. Opteynde, "A maximally-digital radio
receiver front-end," in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2010,
pp. 450 - 451. doi: 10.1109/ISSCC.2010.
5433952.
[16] T. Wu and M. S. Chen, "A noise-shaped
VCO-based nonuniform sampling ADC
with phase-domain level crossing," IEEE J.
Solid-State Circuits, vol. 54, no. 3, pp. 623-
635, Mar. 2019. doi: 10.1109/JSSC.2019.
2892426.
[17] A. Mukherjee et al., "A 1-GS/s 20 MHz-BW
capacitive-input continuous-time∆∑ ADC
IEEE Solid-States Circuits Magazine - Spring 2020
Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Spring 2020
Contents
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover1
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover2
IEEE Solid-States Circuits Magazine - Spring 2020 - Contents
IEEE Solid-States Circuits Magazine - Spring 2020 - 2
IEEE Solid-States Circuits Magazine - Spring 2020 - 3
IEEE Solid-States Circuits Magazine - Spring 2020 - 4
IEEE Solid-States Circuits Magazine - Spring 2020 - 5
IEEE Solid-States Circuits Magazine - Spring 2020 - 6
IEEE Solid-States Circuits Magazine - Spring 2020 - 7
IEEE Solid-States Circuits Magazine - Spring 2020 - 8
IEEE Solid-States Circuits Magazine - Spring 2020 - 9
IEEE Solid-States Circuits Magazine - Spring 2020 - 10
IEEE Solid-States Circuits Magazine - Spring 2020 - 11
IEEE Solid-States Circuits Magazine - Spring 2020 - 12
IEEE Solid-States Circuits Magazine - Spring 2020 - 13
IEEE Solid-States Circuits Magazine - Spring 2020 - 14
IEEE Solid-States Circuits Magazine - Spring 2020 - 15
IEEE Solid-States Circuits Magazine - Spring 2020 - 16
IEEE Solid-States Circuits Magazine - Spring 2020 - 17
IEEE Solid-States Circuits Magazine - Spring 2020 - 18
IEEE Solid-States Circuits Magazine - Spring 2020 - 19
IEEE Solid-States Circuits Magazine - Spring 2020 - 20
IEEE Solid-States Circuits Magazine - Spring 2020 - 21
IEEE Solid-States Circuits Magazine - Spring 2020 - 22
IEEE Solid-States Circuits Magazine - Spring 2020 - 23
IEEE Solid-States Circuits Magazine - Spring 2020 - 24
IEEE Solid-States Circuits Magazine - Spring 2020 - 25
IEEE Solid-States Circuits Magazine - Spring 2020 - 26
IEEE Solid-States Circuits Magazine - Spring 2020 - 27
IEEE Solid-States Circuits Magazine - Spring 2020 - 28
IEEE Solid-States Circuits Magazine - Spring 2020 - 29
IEEE Solid-States Circuits Magazine - Spring 2020 - 30
IEEE Solid-States Circuits Magazine - Spring 2020 - 31
IEEE Solid-States Circuits Magazine - Spring 2020 - 32
IEEE Solid-States Circuits Magazine - Spring 2020 - 33
IEEE Solid-States Circuits Magazine - Spring 2020 - 34
IEEE Solid-States Circuits Magazine - Spring 2020 - 35
IEEE Solid-States Circuits Magazine - Spring 2020 - 36
IEEE Solid-States Circuits Magazine - Spring 2020 - 37
IEEE Solid-States Circuits Magazine - Spring 2020 - 38
IEEE Solid-States Circuits Magazine - Spring 2020 - 39
IEEE Solid-States Circuits Magazine - Spring 2020 - 40
IEEE Solid-States Circuits Magazine - Spring 2020 - 41
IEEE Solid-States Circuits Magazine - Spring 2020 - 42
IEEE Solid-States Circuits Magazine - Spring 2020 - 43
IEEE Solid-States Circuits Magazine - Spring 2020 - 44
IEEE Solid-States Circuits Magazine - Spring 2020 - 45
IEEE Solid-States Circuits Magazine - Spring 2020 - 46
IEEE Solid-States Circuits Magazine - Spring 2020 - 47
IEEE Solid-States Circuits Magazine - Spring 2020 - 48
IEEE Solid-States Circuits Magazine - Spring 2020 - 49
IEEE Solid-States Circuits Magazine - Spring 2020 - 50
IEEE Solid-States Circuits Magazine - Spring 2020 - 51
IEEE Solid-States Circuits Magazine - Spring 2020 - 52
IEEE Solid-States Circuits Magazine - Spring 2020 - 53
IEEE Solid-States Circuits Magazine - Spring 2020 - 54
IEEE Solid-States Circuits Magazine - Spring 2020 - 55
IEEE Solid-States Circuits Magazine - Spring 2020 - 56
IEEE Solid-States Circuits Magazine - Spring 2020 - 57
IEEE Solid-States Circuits Magazine - Spring 2020 - 58
IEEE Solid-States Circuits Magazine - Spring 2020 - 59
IEEE Solid-States Circuits Magazine - Spring 2020 - 60
IEEE Solid-States Circuits Magazine - Spring 2020 - 61
IEEE Solid-States Circuits Magazine - Spring 2020 - 62
IEEE Solid-States Circuits Magazine - Spring 2020 - 63
IEEE Solid-States Circuits Magazine - Spring 2020 - 64
IEEE Solid-States Circuits Magazine - Spring 2020 - 65
IEEE Solid-States Circuits Magazine - Spring 2020 - 66
IEEE Solid-States Circuits Magazine - Spring 2020 - 67
IEEE Solid-States Circuits Magazine - Spring 2020 - 68
IEEE Solid-States Circuits Magazine - Spring 2020 - 69
IEEE Solid-States Circuits Magazine - Spring 2020 - 70
IEEE Solid-States Circuits Magazine - Spring 2020 - 71
IEEE Solid-States Circuits Magazine - Spring 2020 - 72
IEEE Solid-States Circuits Magazine - Spring 2020 - 73
IEEE Solid-States Circuits Magazine - Spring 2020 - 74
IEEE Solid-States Circuits Magazine - Spring 2020 - 75
IEEE Solid-States Circuits Magazine - Spring 2020 - 76
IEEE Solid-States Circuits Magazine - Spring 2020 - 77
IEEE Solid-States Circuits Magazine - Spring 2020 - 78
IEEE Solid-States Circuits Magazine - Spring 2020 - 79
IEEE Solid-States Circuits Magazine - Spring 2020 - 80
IEEE Solid-States Circuits Magazine - Spring 2020 - 81
IEEE Solid-States Circuits Magazine - Spring 2020 - 82
IEEE Solid-States Circuits Magazine - Spring 2020 - 83
IEEE Solid-States Circuits Magazine - Spring 2020 - 84
IEEE Solid-States Circuits Magazine - Spring 2020 - 85
IEEE Solid-States Circuits Magazine - Spring 2020 - 86
IEEE Solid-States Circuits Magazine - Spring 2020 - 87
IEEE Solid-States Circuits Magazine - Spring 2020 - 88
IEEE Solid-States Circuits Magazine - Spring 2020 - 89
IEEE Solid-States Circuits Magazine - Spring 2020 - 90
IEEE Solid-States Circuits Magazine - Spring 2020 - 91
IEEE Solid-States Circuits Magazine - Spring 2020 - 92
IEEE Solid-States Circuits Magazine - Spring 2020 - 93
IEEE Solid-States Circuits Magazine - Spring 2020 - 94
IEEE Solid-States Circuits Magazine - Spring 2020 - 95
IEEE Solid-States Circuits Magazine - Spring 2020 - 96
IEEE Solid-States Circuits Magazine - Spring 2020 - 97
IEEE Solid-States Circuits Magazine - Spring 2020 - 98
IEEE Solid-States Circuits Magazine - Spring 2020 - 99
IEEE Solid-States Circuits Magazine - Spring 2020 - 100
IEEE Solid-States Circuits Magazine - Spring 2020 - 101
IEEE Solid-States Circuits Magazine - Spring 2020 - 102
IEEE Solid-States Circuits Magazine - Spring 2020 - 103
IEEE Solid-States Circuits Magazine - Spring 2020 - 104
IEEE Solid-States Circuits Magazine - Spring 2020 - 105
IEEE Solid-States Circuits Magazine - Spring 2020 - 106
IEEE Solid-States Circuits Magazine - Spring 2020 - 107
IEEE Solid-States Circuits Magazine - Spring 2020 - 108
IEEE Solid-States Circuits Magazine - Spring 2020 - 109
IEEE Solid-States Circuits Magazine - Spring 2020 - 110
IEEE Solid-States Circuits Magazine - Spring 2020 - 111
IEEE Solid-States Circuits Magazine - Spring 2020 - 112
IEEE Solid-States Circuits Magazine - Spring 2020 - 113
IEEE Solid-States Circuits Magazine - Spring 2020 - 114
IEEE Solid-States Circuits Magazine - Spring 2020 - 115
IEEE Solid-States Circuits Magazine - Spring 2020 - 116
IEEE Solid-States Circuits Magazine - Spring 2020 - 117
IEEE Solid-States Circuits Magazine - Spring 2020 - 118
IEEE Solid-States Circuits Magazine - Spring 2020 - 119
IEEE Solid-States Circuits Magazine - Spring 2020 - 120
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover3
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com