IEEE Solid-States Circuits Magazine - Spring 2020 - 9

	

Z in - 1 =
gm

c R 1 - 1 mC1 s
gm
.(9)
C1 s + gm

Inverting this impedance and decomposing the result into a sum,
-1
c Z in - 1 m =
gm

	

1
C
1
c R1 m 1s
gm gm

1
(10)
,
+
R1 - 1
gm

we identify two elements in parallel.
The first term on the right represents the admittance of an inductor
having a value of
	

L eq = c R 1 - 1 m C 1 , (11)
gm gm

and the second term corresponds to
the inverse of a resistance equal to
R 1 - 1/g m, both of which confirm the
topology predicted in Figure 8. As
expected, we must have R 1 2 1/g m
to obtain an inductance. In practice,
we choose R 1 & 1/g m, obtaining
L eq = R 1 C 1 .(12)
gm

	

The circuits of Figures 4 and 5 follow these results as well. We can
thus select R 1, C 1, and g m to obtain
a desired inductance, and we can
make them programmable so as to
tune L eq.
The two resistive components in
Figure 8 imply a finite quality factor
(Q ) for the active inductor. Returning to Z in in (8), we can define the Q
as the desirable (imaginary) part of
Z in divided by the undesirable (real)
part. It follows that
	

Q=

	

=

I m {Z in}
(13)
Re {Z in}

is considered, and the second term
represents the Q only if the series
resistance, 1/g m, is taken into account. The maximum Q occurs if
g m / (C 1 ~) = R 1 C 1 ~ and is equal to
g m / (2C 1 ~). However, the Q is also
limited by the output resistance of M 1.
For the gyrator-based circuit of
Figure 3, one can readily show that
	

Z in = -

C1
s.(17)
G m1 G m2

(Recall that G m1 G m2 must be negative.) The equivalent inductance is
therefore equal to - C 1 / (G m1 G m2) and
can be set to relatively large values
(e.g., in the microhenry range) by
selecting a small G m1 G m2 product.
Since the G m blocks can incorporate
multiple stages, this structure can
achieve higher inductance values
than that in Figure 2(b).
In contrast to the topology of Figure 2(b), the gyrator-based inductor
appears to exhibit an infinite Q as
(17) does not contain a real part. But
the output resistances of G m1 and
G m2 must be considered. Referring
to Figure 9, we write I F as
	

I F = - G m1

rO1
G V , (18)
rO1 C 1 s + 1 m2 X

and hence
1
	 VX = - C 1 s .(19)
IF
G m1 G m2
G m1 G m2 rO1
The equivalent inductor thus suffers from both a series resistance
equal to - 1/ (G m1 G m2 rO1) and a parallel resistance equal to rO2.

	

The speed improvement afforded
by M 1 is limited by its gate-drain
and source-bulk capacitances. We
can quantify the effect of the former
by redrawing the active inductor as
in Figure 10(b), where C 2 denotes
the gate-drain capacitance. Opening
the feedback loop, noting that the
loop gain is still equal to g m / (C 1 s),
and finding the overall impedance,
we have
	 Z in =


Active inductors have found a multitude of applications in circuit de-

R 1 (C 1 + C 2) s + 1
1
.
$
C1 s + gm
R1 C2 s + 1
(20)

Compared to (8), this impedance exhibits a lower zero frequency and

^g m R 1 - 1h C 1 ~
.(14)
g m + R 1 C 21 ~ 2

Gm1

gm
R1 C1 ~
C
1~
Q=
(15)
gm
+ R1 C1 ~
C1 ~
gm
m ^R 1 C 1 ~h. (16)
=c
C1 ~

We note that the first term on the right
corresponds to the Q of L eq if only the
parallel resistance, R 1 - 1/g m . R 1,

	

In a manner
similar to
their passive
counterparts,
active inductors
can create shunt
peaking, thus
widening the
bandwidth of
amplifiers.

Applications and Design Issues

If R 1 & 1/g m,
	

sign. In this section, we study a few
and describe their tradeoffs.
In a manner similar to their passive counterparts, active inductors
can create shunt peaking, thus widening the bandwidth of amplifiers.
Illustrated in Figure 10(a) is an example [2] where M 1 along with R 1
and the gate-source capacitance,
C GS = C 1, acts as an inductance in
series with R D. This branch exhibits
a higher impedance as the frequency increases, partially counteracting the effect of C L.

VX

+
-

-C1
Gm1Gm2

C1
IF
rO 2

Zin
Gm2

rO 2

−1
Gm1Gm2rO 1

rO 1

FIGURE 9: A gyrator circuit with finite output impedances.

	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

S P R I N G 2 0 2 0	

9



IEEE Solid-States Circuits Magazine - Spring 2020

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Spring 2020

Contents
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover1
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover2
IEEE Solid-States Circuits Magazine - Spring 2020 - Contents
IEEE Solid-States Circuits Magazine - Spring 2020 - 2
IEEE Solid-States Circuits Magazine - Spring 2020 - 3
IEEE Solid-States Circuits Magazine - Spring 2020 - 4
IEEE Solid-States Circuits Magazine - Spring 2020 - 5
IEEE Solid-States Circuits Magazine - Spring 2020 - 6
IEEE Solid-States Circuits Magazine - Spring 2020 - 7
IEEE Solid-States Circuits Magazine - Spring 2020 - 8
IEEE Solid-States Circuits Magazine - Spring 2020 - 9
IEEE Solid-States Circuits Magazine - Spring 2020 - 10
IEEE Solid-States Circuits Magazine - Spring 2020 - 11
IEEE Solid-States Circuits Magazine - Spring 2020 - 12
IEEE Solid-States Circuits Magazine - Spring 2020 - 13
IEEE Solid-States Circuits Magazine - Spring 2020 - 14
IEEE Solid-States Circuits Magazine - Spring 2020 - 15
IEEE Solid-States Circuits Magazine - Spring 2020 - 16
IEEE Solid-States Circuits Magazine - Spring 2020 - 17
IEEE Solid-States Circuits Magazine - Spring 2020 - 18
IEEE Solid-States Circuits Magazine - Spring 2020 - 19
IEEE Solid-States Circuits Magazine - Spring 2020 - 20
IEEE Solid-States Circuits Magazine - Spring 2020 - 21
IEEE Solid-States Circuits Magazine - Spring 2020 - 22
IEEE Solid-States Circuits Magazine - Spring 2020 - 23
IEEE Solid-States Circuits Magazine - Spring 2020 - 24
IEEE Solid-States Circuits Magazine - Spring 2020 - 25
IEEE Solid-States Circuits Magazine - Spring 2020 - 26
IEEE Solid-States Circuits Magazine - Spring 2020 - 27
IEEE Solid-States Circuits Magazine - Spring 2020 - 28
IEEE Solid-States Circuits Magazine - Spring 2020 - 29
IEEE Solid-States Circuits Magazine - Spring 2020 - 30
IEEE Solid-States Circuits Magazine - Spring 2020 - 31
IEEE Solid-States Circuits Magazine - Spring 2020 - 32
IEEE Solid-States Circuits Magazine - Spring 2020 - 33
IEEE Solid-States Circuits Magazine - Spring 2020 - 34
IEEE Solid-States Circuits Magazine - Spring 2020 - 35
IEEE Solid-States Circuits Magazine - Spring 2020 - 36
IEEE Solid-States Circuits Magazine - Spring 2020 - 37
IEEE Solid-States Circuits Magazine - Spring 2020 - 38
IEEE Solid-States Circuits Magazine - Spring 2020 - 39
IEEE Solid-States Circuits Magazine - Spring 2020 - 40
IEEE Solid-States Circuits Magazine - Spring 2020 - 41
IEEE Solid-States Circuits Magazine - Spring 2020 - 42
IEEE Solid-States Circuits Magazine - Spring 2020 - 43
IEEE Solid-States Circuits Magazine - Spring 2020 - 44
IEEE Solid-States Circuits Magazine - Spring 2020 - 45
IEEE Solid-States Circuits Magazine - Spring 2020 - 46
IEEE Solid-States Circuits Magazine - Spring 2020 - 47
IEEE Solid-States Circuits Magazine - Spring 2020 - 48
IEEE Solid-States Circuits Magazine - Spring 2020 - 49
IEEE Solid-States Circuits Magazine - Spring 2020 - 50
IEEE Solid-States Circuits Magazine - Spring 2020 - 51
IEEE Solid-States Circuits Magazine - Spring 2020 - 52
IEEE Solid-States Circuits Magazine - Spring 2020 - 53
IEEE Solid-States Circuits Magazine - Spring 2020 - 54
IEEE Solid-States Circuits Magazine - Spring 2020 - 55
IEEE Solid-States Circuits Magazine - Spring 2020 - 56
IEEE Solid-States Circuits Magazine - Spring 2020 - 57
IEEE Solid-States Circuits Magazine - Spring 2020 - 58
IEEE Solid-States Circuits Magazine - Spring 2020 - 59
IEEE Solid-States Circuits Magazine - Spring 2020 - 60
IEEE Solid-States Circuits Magazine - Spring 2020 - 61
IEEE Solid-States Circuits Magazine - Spring 2020 - 62
IEEE Solid-States Circuits Magazine - Spring 2020 - 63
IEEE Solid-States Circuits Magazine - Spring 2020 - 64
IEEE Solid-States Circuits Magazine - Spring 2020 - 65
IEEE Solid-States Circuits Magazine - Spring 2020 - 66
IEEE Solid-States Circuits Magazine - Spring 2020 - 67
IEEE Solid-States Circuits Magazine - Spring 2020 - 68
IEEE Solid-States Circuits Magazine - Spring 2020 - 69
IEEE Solid-States Circuits Magazine - Spring 2020 - 70
IEEE Solid-States Circuits Magazine - Spring 2020 - 71
IEEE Solid-States Circuits Magazine - Spring 2020 - 72
IEEE Solid-States Circuits Magazine - Spring 2020 - 73
IEEE Solid-States Circuits Magazine - Spring 2020 - 74
IEEE Solid-States Circuits Magazine - Spring 2020 - 75
IEEE Solid-States Circuits Magazine - Spring 2020 - 76
IEEE Solid-States Circuits Magazine - Spring 2020 - 77
IEEE Solid-States Circuits Magazine - Spring 2020 - 78
IEEE Solid-States Circuits Magazine - Spring 2020 - 79
IEEE Solid-States Circuits Magazine - Spring 2020 - 80
IEEE Solid-States Circuits Magazine - Spring 2020 - 81
IEEE Solid-States Circuits Magazine - Spring 2020 - 82
IEEE Solid-States Circuits Magazine - Spring 2020 - 83
IEEE Solid-States Circuits Magazine - Spring 2020 - 84
IEEE Solid-States Circuits Magazine - Spring 2020 - 85
IEEE Solid-States Circuits Magazine - Spring 2020 - 86
IEEE Solid-States Circuits Magazine - Spring 2020 - 87
IEEE Solid-States Circuits Magazine - Spring 2020 - 88
IEEE Solid-States Circuits Magazine - Spring 2020 - 89
IEEE Solid-States Circuits Magazine - Spring 2020 - 90
IEEE Solid-States Circuits Magazine - Spring 2020 - 91
IEEE Solid-States Circuits Magazine - Spring 2020 - 92
IEEE Solid-States Circuits Magazine - Spring 2020 - 93
IEEE Solid-States Circuits Magazine - Spring 2020 - 94
IEEE Solid-States Circuits Magazine - Spring 2020 - 95
IEEE Solid-States Circuits Magazine - Spring 2020 - 96
IEEE Solid-States Circuits Magazine - Spring 2020 - 97
IEEE Solid-States Circuits Magazine - Spring 2020 - 98
IEEE Solid-States Circuits Magazine - Spring 2020 - 99
IEEE Solid-States Circuits Magazine - Spring 2020 - 100
IEEE Solid-States Circuits Magazine - Spring 2020 - 101
IEEE Solid-States Circuits Magazine - Spring 2020 - 102
IEEE Solid-States Circuits Magazine - Spring 2020 - 103
IEEE Solid-States Circuits Magazine - Spring 2020 - 104
IEEE Solid-States Circuits Magazine - Spring 2020 - 105
IEEE Solid-States Circuits Magazine - Spring 2020 - 106
IEEE Solid-States Circuits Magazine - Spring 2020 - 107
IEEE Solid-States Circuits Magazine - Spring 2020 - 108
IEEE Solid-States Circuits Magazine - Spring 2020 - 109
IEEE Solid-States Circuits Magazine - Spring 2020 - 110
IEEE Solid-States Circuits Magazine - Spring 2020 - 111
IEEE Solid-States Circuits Magazine - Spring 2020 - 112
IEEE Solid-States Circuits Magazine - Spring 2020 - 113
IEEE Solid-States Circuits Magazine - Spring 2020 - 114
IEEE Solid-States Circuits Magazine - Spring 2020 - 115
IEEE Solid-States Circuits Magazine - Spring 2020 - 116
IEEE Solid-States Circuits Magazine - Spring 2020 - 117
IEEE Solid-States Circuits Magazine - Spring 2020 - 118
IEEE Solid-States Circuits Magazine - Spring 2020 - 119
IEEE Solid-States Circuits Magazine - Spring 2020 - 120
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover3
IEEE Solid-States Circuits Magazine - Spring 2020 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com