IEEE Solid-States Circuits Magazine - Spring 2023 - 57

In terms of the safety of BCC and BCP
methods, the power level is well below
the IEEE standard.
and such RF waves have been already
coupled to our body. So far,
we have not utilized it-it just
shunts to the Earth ground through
the parasitic capacitance between
the body and the ground (CLKG) [5].
Figure 14(b) shows the spectrum of
the body-coupled RF energy (in blue)
compared to the air-coupled RF (in
gray, through a 1-m-long monopole
antenna), measured in an office environment.
It should be noted that,
of various RF/EM sources in such an
environment, the 50/60 Hz coupling
from the building's power network/
lighting and appliances dominates.
If we were to use an explicit antenna
to harvest the 50/60 Hz from
these " interferences, " the antenna size
would become unrealistically bulky.
In contrast, we can exploit the bodycoupled
characteristic as is [Figure
14(a)]. Using the same power
receiver as in BCP, we can harvest
microwatt-level power. [29] demonstrated
that we can power up and
operate a calculator from body-coupled
energy harvesting in an office
environment. To adapt to the large
load difference between BCP and
harvesting, we can introduce a dual-mode
buck-boost converter (DMBBC)
[31] so that the efficiency will
improve (Figure 13).
BANs and Safety
In terms of the safety of BCC and
BCP methods, the power level is
well below the IEEE standard. For
example, at 1.2-W power [29], the efield
across the human body will be
below 0.032 V/m, which is orders of
magnitude below the IEEE standard
(2.1 V/m under a controlled environment
and 0.701 V/m for the general
public) [29]. Even if we increase the
TX power by 10 times (for a greater
margin), the e-field across the body
is still well below the threshold. The
same can be said for the harvesting-even
without the body-coupled
energy harvesting, the body already
has the coupling to the environmental
EM wave (50/60 Hz, etc.), and
this is not considered a safety concern-the
body-coupled harvesting
shows a similar level of coupling.
Conclusion
We have viewed the BAN as an attractive
means for pervasive connectivity
and powering of nodes in/
around the human body. Up to now,
researchers have focused on communication
and powering methods
on/inside the body. With this in
mind, what are the remaining topics
yet to be explored, and where
are we heading? Looking forward,
one such topic is combining communication
and powering; having
both concurrently and seamlessly
would provide flexibility in forming
a BAN system. Another topic is
a heterogeneous BAN; once we have
the data collected by the on/insidethe-body
BAN technology, we would
like to send the data to a nearby
central node, such as a smartphone
or base station via off-body BAN.
For this, robust and seamless communication/powering
is also important,
and integrating the two
will lead to a true heterogeneous
BAN, opening the door to the " human
intranet " [2].
Acknowledgment
This work involved human subjects
or animals in its research. Approval
of all ethical and experimental
procedures and protocols was
granted by the National University
of Singapore's Institutional Review
Board under Application No. NUSIRB-2021-304,
and performed in line
with the Body-Area Network (BAN)
Transceiver Design for Communication
and Powering and Wearable
System declaration.
References
[1] J. Yoo, " Wearable body area network: Towards
preemptive and proactive healthcare
applications, " in Proc. IEEE Int. SolidState
Circuits Conf. (ISSCC) Forum, Feb.
2011.
[2] J. M. Rabaey, A. C. Arias, and R. Muller,
" Architecting the human intranet, " in Proc.
IEEE 47th Eur. Solid-State Circuits Conf. (ESSDERC),
Sep. 2021, pp. 15-20, doi: 10.1109/
ESSCIRC53450.2021.9567774.
[3] S. L. Cotton, " A statistical model for shadowed
body-centric communications channels:
Theory and validation, " IEEE Trans.
Antennas Propag., vol. 62, no. 3, pp. 1416-
1424, Mar. 2014, doi: 10.1109/TAP.2013.
2295211.
[4] T. Zasowski, G. Meyer, F. Althaus, and A.
Wittneben, " UWB signal propagation at the
human head, " IEEE Trans. Microw. Theory
Techn., vol. 54, no. 4, pp. 1836-1845, Jun.
2006, doi: 10.1109/TMTT.2006.871989.
[5] J. Li et al., " Body-area powering with human
body-coupled power transmission
and energy harvesting ICs, " IEEE Trans.
Biomed. Circuits Syst., vol. 14, no. 6, pp.
1263-1273, Dec. 2020, doi: 10.1109/TBCAS.2020.3039191.
[6]
N. Desai et al., " A scalable, 2.9 mW, 1 Mb/s
e-textiles body area network transceiver
with remotely-powered nodes and bi-directional
data communication, " IEEE J. SolidState
Circuits, vol. 49, no. 9, pp. 1995-2004,
Sep. 2014, doi: 10.1109/JSSC.2014.2328343.
[7] X. Tian et al., " Wireless body sensor networks
based on metamaterial textiles, "
Nature Electron., vol. 2, no. 6, pp. 243-251,
Jun. 2019, doi: 10.1038/s41928-019-0257-7.
[8] J. Yoo et al., " A 1.12 pJ/b inductive transceiver
with a fault-tolerant network switch
for multi-layer wearable body area network
applications, " IEEE J. Solid-State Circuits,
vol. 44, no. 11, pp. 2999-3010, Nov.
2009, doi: 10.1109/JSSC.2009.2028952.
[9] N. Cho et al., " The human body characteristics
as a signal transmission medium for
intrabody communication, " IEEE Trans.
Microw. Theory Techn., vol. 55, no. 5, pp.
1080-1086, May 2007, doi: 10.1109/TMTT.
2007.895640.
[10] M. Callejon et al., " Distributed circuit
modeling of galvanic and capacitive
coupling for intrabody communication, "
IEEE Trans. Biomed. Eng., vol. 59, no. 11,
pp. 3263-3269, Nov. 2012, doi: 10.1109/
TBME.2012.2205382.
[11] J. Park and P. P. Mercier, " Magnetic human
body communication, " in Proc. 37th Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC),
Aug. 2015, pp. 1841-1844, doi: 10.1109/
EMBC.2015.7318739.
[12] J. Park and P. P. Mercier, " A sub-10-pJ/bit
5-Mb/s magnetic human body communication
transceiver, " IEEE J. Solid-State Circuits,
vol. 54, no. 11, pp. 3031-3042, Nov. 2019,
doi: 10.1109/JSSC.2019.2935549.
[13] E. Wen et al., " Channel characterization of
magnetic human body communication, "
IEEE Trans. Biomed. Eng., vol. 69, no. 2, pp.
569-579, Feb. 2022, doi: 10.1109/TBME.2021.
3101766.
[14] T. G. Zimmerman, " Personal area networks:
Near-field intrabody communication, " IBM
Syst. J., vol. 35, no. 3.4, pp. 609-617, 1996,
doi: 10.1147/sj.353.0609.
[15] S.-J. Song et al., " A 0.9V 2.6mW body-coupled
scalable PHY transceiver for body
sensor applications, " in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 2007, pp. 366-609, doi: 10.1109/
ISSCC.2007.373446.
[16] G. Ander son and C. Sodin i, " Body
coupled communication: The channel
IEEE SOLID-STATE CIRCUITS MAGAZINE
SPRING 2023
57
http://dx.doi.org/10.1109/TAP.2013.2295211 http://dx.doi.org/10.1109/TAP.2013.2295211 http://dx.doi.org/10.1109/TMTT.2006.871989 http://dx.doi.org/10.1109/TBCAS.2020.3039191 http://dx.doi.org/10.1109/TBCAS.2020.3039191 http://dx.doi.org/10.1109/JSSC.2014.2328343 http://dx.doi.org/10.1038/s41928-019-0257-7 http://dx.doi.org/10.1109/JSSC.2009.2028952 http://dx.doi.org/10.1109/TMTT.2007.895640 http://dx.doi.org/10.1109/TMTT.2007.895640 http://dx.doi.org/10.1109/JSSC.2019.2935549 http://dx.doi.org/10.1109/TBME.2021.3101766 http://dx.doi.org/10.1109/TBME.2021.3101766 http://dx.doi.org/10.1147/sj.353.0609

IEEE Solid-States Circuits Magazine - Spring 2023

Table of Contents for the Digital Edition of IEEE Solid-States Circuits Magazine - Spring 2023

Contents
IEEE Solid-States Circuits Magazine - Spring 2023 - Cover1
IEEE Solid-States Circuits Magazine - Spring 2023 - Cover2
IEEE Solid-States Circuits Magazine - Spring 2023 - Contents
IEEE Solid-States Circuits Magazine - Spring 2023 - 2
IEEE Solid-States Circuits Magazine - Spring 2023 - 3
IEEE Solid-States Circuits Magazine - Spring 2023 - 4
IEEE Solid-States Circuits Magazine - Spring 2023 - 5
IEEE Solid-States Circuits Magazine - Spring 2023 - 6
IEEE Solid-States Circuits Magazine - Spring 2023 - 7
IEEE Solid-States Circuits Magazine - Spring 2023 - 8
IEEE Solid-States Circuits Magazine - Spring 2023 - 9
IEEE Solid-States Circuits Magazine - Spring 2023 - 10
IEEE Solid-States Circuits Magazine - Spring 2023 - 11
IEEE Solid-States Circuits Magazine - Spring 2023 - 12
IEEE Solid-States Circuits Magazine - Spring 2023 - 13
IEEE Solid-States Circuits Magazine - Spring 2023 - 14
IEEE Solid-States Circuits Magazine - Spring 2023 - 15
IEEE Solid-States Circuits Magazine - Spring 2023 - 16
IEEE Solid-States Circuits Magazine - Spring 2023 - 17
IEEE Solid-States Circuits Magazine - Spring 2023 - 18
IEEE Solid-States Circuits Magazine - Spring 2023 - 19
IEEE Solid-States Circuits Magazine - Spring 2023 - 20
IEEE Solid-States Circuits Magazine - Spring 2023 - 21
IEEE Solid-States Circuits Magazine - Spring 2023 - 22
IEEE Solid-States Circuits Magazine - Spring 2023 - 23
IEEE Solid-States Circuits Magazine - Spring 2023 - 24
IEEE Solid-States Circuits Magazine - Spring 2023 - 25
IEEE Solid-States Circuits Magazine - Spring 2023 - 26
IEEE Solid-States Circuits Magazine - Spring 2023 - 27
IEEE Solid-States Circuits Magazine - Spring 2023 - 28
IEEE Solid-States Circuits Magazine - Spring 2023 - 29
IEEE Solid-States Circuits Magazine - Spring 2023 - 30
IEEE Solid-States Circuits Magazine - Spring 2023 - 31
IEEE Solid-States Circuits Magazine - Spring 2023 - 32
IEEE Solid-States Circuits Magazine - Spring 2023 - 33
IEEE Solid-States Circuits Magazine - Spring 2023 - 34
IEEE Solid-States Circuits Magazine - Spring 2023 - 35
IEEE Solid-States Circuits Magazine - Spring 2023 - 36
IEEE Solid-States Circuits Magazine - Spring 2023 - 37
IEEE Solid-States Circuits Magazine - Spring 2023 - 38
IEEE Solid-States Circuits Magazine - Spring 2023 - 39
IEEE Solid-States Circuits Magazine - Spring 2023 - 40
IEEE Solid-States Circuits Magazine - Spring 2023 - 41
IEEE Solid-States Circuits Magazine - Spring 2023 - 42
IEEE Solid-States Circuits Magazine - Spring 2023 - 43
IEEE Solid-States Circuits Magazine - Spring 2023 - 44
IEEE Solid-States Circuits Magazine - Spring 2023 - 45
IEEE Solid-States Circuits Magazine - Spring 2023 - 46
IEEE Solid-States Circuits Magazine - Spring 2023 - 47
IEEE Solid-States Circuits Magazine - Spring 2023 - 48
IEEE Solid-States Circuits Magazine - Spring 2023 - 49
IEEE Solid-States Circuits Magazine - Spring 2023 - 50
IEEE Solid-States Circuits Magazine - Spring 2023 - 51
IEEE Solid-States Circuits Magazine - Spring 2023 - 52
IEEE Solid-States Circuits Magazine - Spring 2023 - 53
IEEE Solid-States Circuits Magazine - Spring 2023 - 54
IEEE Solid-States Circuits Magazine - Spring 2023 - 55
IEEE Solid-States Circuits Magazine - Spring 2023 - 56
IEEE Solid-States Circuits Magazine - Spring 2023 - 57
IEEE Solid-States Circuits Magazine - Spring 2023 - 58
IEEE Solid-States Circuits Magazine - Spring 2023 - 59
IEEE Solid-States Circuits Magazine - Spring 2023 - 60
IEEE Solid-States Circuits Magazine - Spring 2023 - 61
IEEE Solid-States Circuits Magazine - Spring 2023 - 62
IEEE Solid-States Circuits Magazine - Spring 2023 - 63
IEEE Solid-States Circuits Magazine - Spring 2023 - 64
IEEE Solid-States Circuits Magazine - Spring 2023 - 65
IEEE Solid-States Circuits Magazine - Spring 2023 - 66
IEEE Solid-States Circuits Magazine - Spring 2023 - 67
IEEE Solid-States Circuits Magazine - Spring 2023 - 68
IEEE Solid-States Circuits Magazine - Spring 2023 - 69
IEEE Solid-States Circuits Magazine - Spring 2023 - 70
IEEE Solid-States Circuits Magazine - Spring 2023 - 71
IEEE Solid-States Circuits Magazine - Spring 2023 - 72
IEEE Solid-States Circuits Magazine - Spring 2023 - 73
IEEE Solid-States Circuits Magazine - Spring 2023 - 74
IEEE Solid-States Circuits Magazine - Spring 2023 - 75
IEEE Solid-States Circuits Magazine - Spring 2023 - 76
IEEE Solid-States Circuits Magazine - Spring 2023 - 77
IEEE Solid-States Circuits Magazine - Spring 2023 - 78
IEEE Solid-States Circuits Magazine - Spring 2023 - 79
IEEE Solid-States Circuits Magazine - Spring 2023 - 80
IEEE Solid-States Circuits Magazine - Spring 2023 - 81
IEEE Solid-States Circuits Magazine - Spring 2023 - 82
IEEE Solid-States Circuits Magazine - Spring 2023 - 83
IEEE Solid-States Circuits Magazine - Spring 2023 - 84
IEEE Solid-States Circuits Magazine - Spring 2023 - 85
IEEE Solid-States Circuits Magazine - Spring 2023 - 86
IEEE Solid-States Circuits Magazine - Spring 2023 - 87
IEEE Solid-States Circuits Magazine - Spring 2023 - 88
IEEE Solid-States Circuits Magazine - Spring 2023 - 89
IEEE Solid-States Circuits Magazine - Spring 2023 - 90
IEEE Solid-States Circuits Magazine - Spring 2023 - 91
IEEE Solid-States Circuits Magazine - Spring 2023 - 92
IEEE Solid-States Circuits Magazine - Spring 2023 - 93
IEEE Solid-States Circuits Magazine - Spring 2023 - 94
IEEE Solid-States Circuits Magazine - Spring 2023 - 95
IEEE Solid-States Circuits Magazine - Spring 2023 - 96
IEEE Solid-States Circuits Magazine - Spring 2023 - 97
IEEE Solid-States Circuits Magazine - Spring 2023 - 98
IEEE Solid-States Circuits Magazine - Spring 2023 - 99
IEEE Solid-States Circuits Magazine - Spring 2023 - 100
IEEE Solid-States Circuits Magazine - Spring 2023 - 101
IEEE Solid-States Circuits Magazine - Spring 2023 - 102
IEEE Solid-States Circuits Magazine - Spring 2023 - 103
IEEE Solid-States Circuits Magazine - Spring 2023 - 104
IEEE Solid-States Circuits Magazine - Spring 2023 - 105
IEEE Solid-States Circuits Magazine - Spring 2023 - 106
IEEE Solid-States Circuits Magazine - Spring 2023 - 107
IEEE Solid-States Circuits Magazine - Spring 2023 - 108
IEEE Solid-States Circuits Magazine - Spring 2023 - 109
IEEE Solid-States Circuits Magazine - Spring 2023 - 110
IEEE Solid-States Circuits Magazine - Spring 2023 - 111
IEEE Solid-States Circuits Magazine - Spring 2023 - 112
IEEE Solid-States Circuits Magazine - Spring 2023 - 113
IEEE Solid-States Circuits Magazine - Spring 2023 - 114
IEEE Solid-States Circuits Magazine - Spring 2023 - 115
IEEE Solid-States Circuits Magazine - Spring 2023 - 116
IEEE Solid-States Circuits Magazine - Spring 2023 - 117
IEEE Solid-States Circuits Magazine - Spring 2023 - 118
IEEE Solid-States Circuits Magazine - Spring 2023 - 119
IEEE Solid-States Circuits Magazine - Spring 2023 - 120
IEEE Solid-States Circuits Magazine - Spring 2023 - 121
IEEE Solid-States Circuits Magazine - Spring 2023 - 122
IEEE Solid-States Circuits Magazine - Spring 2023 - 123
IEEE Solid-States Circuits Magazine - Spring 2023 - 124
IEEE Solid-States Circuits Magazine - Spring 2023 - 125
IEEE Solid-States Circuits Magazine - Spring 2023 - 126
IEEE Solid-States Circuits Magazine - Spring 2023 - 127
IEEE Solid-States Circuits Magazine - Spring 2023 - 128
IEEE Solid-States Circuits Magazine - Spring 2023 - 129
IEEE Solid-States Circuits Magazine - Spring 2023 - 130
IEEE Solid-States Circuits Magazine - Spring 2023 - 131
IEEE Solid-States Circuits Magazine - Spring 2023 - 132
IEEE Solid-States Circuits Magazine - Spring 2023 - 133
IEEE Solid-States Circuits Magazine - Spring 2023 - 134
IEEE Solid-States Circuits Magazine - Spring 2023 - 135
IEEE Solid-States Circuits Magazine - Spring 2023 - 136
IEEE Solid-States Circuits Magazine - Spring 2023 - 137
IEEE Solid-States Circuits Magazine - Spring 2023 - 138
IEEE Solid-States Circuits Magazine - Spring 2023 - 139
IEEE Solid-States Circuits Magazine - Spring 2023 - 140
IEEE Solid-States Circuits Magazine - Spring 2023 - 141
IEEE Solid-States Circuits Magazine - Spring 2023 - 142
IEEE Solid-States Circuits Magazine - Spring 2023 - 143
IEEE Solid-States Circuits Magazine - Spring 2023 - 144
IEEE Solid-States Circuits Magazine - Spring 2023 - 145
IEEE Solid-States Circuits Magazine - Spring 2023 - 146
IEEE Solid-States Circuits Magazine - Spring 2023 - 147
IEEE Solid-States Circuits Magazine - Spring 2023 - 148
IEEE Solid-States Circuits Magazine - Spring 2023 - 149
IEEE Solid-States Circuits Magazine - Spring 2023 - 150
IEEE Solid-States Circuits Magazine - Spring 2023 - 151
IEEE Solid-States Circuits Magazine - Spring 2023 - 152
IEEE Solid-States Circuits Magazine - Spring 2023 - 153
IEEE Solid-States Circuits Magazine - Spring 2023 - 154
IEEE Solid-States Circuits Magazine - Spring 2023 - 155
IEEE Solid-States Circuits Magazine - Spring 2023 - 156
IEEE Solid-States Circuits Magazine - Spring 2023 - 157
IEEE Solid-States Circuits Magazine - Spring 2023 - 158
IEEE Solid-States Circuits Magazine - Spring 2023 - 159
IEEE Solid-States Circuits Magazine - Spring 2023 - 160
IEEE Solid-States Circuits Magazine - Spring 2023 - 161
IEEE Solid-States Circuits Magazine - Spring 2023 - 162
IEEE Solid-States Circuits Magazine - Spring 2023 - 163
IEEE Solid-States Circuits Magazine - Spring 2023 - 164
IEEE Solid-States Circuits Magazine - Spring 2023 - 165
IEEE Solid-States Circuits Magazine - Spring 2023 - 166
IEEE Solid-States Circuits Magazine - Spring 2023 - 167
IEEE Solid-States Circuits Magazine - Spring 2023 - 168
IEEE Solid-States Circuits Magazine - Spring 2023 - 169
IEEE Solid-States Circuits Magazine - Spring 2023 - 170
IEEE Solid-States Circuits Magazine - Spring 2023 - 171
IEEE Solid-States Circuits Magazine - Spring 2023 - 172
IEEE Solid-States Circuits Magazine - Spring 2023 - 173
IEEE Solid-States Circuits Magazine - Spring 2023 - 174
IEEE Solid-States Circuits Magazine - Spring 2023 - 175
IEEE Solid-States Circuits Magazine - Spring 2023 - 176
IEEE Solid-States Circuits Magazine - Spring 2023 - 177
IEEE Solid-States Circuits Magazine - Spring 2023 - 178
IEEE Solid-States Circuits Magazine - Spring 2023 - 179
IEEE Solid-States Circuits Magazine - Spring 2023 - 180
IEEE Solid-States Circuits Magazine - Spring 2023 - 181
IEEE Solid-States Circuits Magazine - Spring 2023 - 182
IEEE Solid-States Circuits Magazine - Spring 2023 - 183
IEEE Solid-States Circuits Magazine - Spring 2023 - 184
IEEE Solid-States Circuits Magazine - Spring 2023 - Cover3
IEEE Solid-States Circuits Magazine - Spring 2023 - Cover4
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2023
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2022
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2021
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_spring2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_winter2020
https://www.nxtbook.com/nxtbooks/ieee/mssc_fall2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_summer2019
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2019winter
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018fall
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018summer
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018spring
https://www.nxtbook.com/nxtbooks/ieee/mssc_2018winter
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2017
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2016
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2015
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_winter2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_fall2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_summer2014
https://www.nxtbook.com/nxtbooks/ieee/solidstatecircuits_spring2014
https://www.nxtbookmedia.com